Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Fish Biol ; 103(6): 1321-1334, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37605608

RESUMEN

Large reductions in fish biomass are common both as a method of managing lake ecosystems by fish removals (biomanipulation) and as naturally occurring fish kills. To further understand how fish reductions change feeding patterns of fish, we studied the diets of small- to medium-sized roach (Rutilus rutilus) and European perch (Perca fluviatilis) on a monthly basis using gut-content analysis during an 18-month period before and after a whole-lake fish removal in a eutrophic shallow lake. Further, we performed in-depth analyses of zoobenthos communities of the profundal and littoral zones, as well as analysed the zooplankton community in the littoral and pelagic parts of the lake to estimate abundance and biomass of potential diet items. We found that, in general, there was a trend toward increased zoobenthivory in both species and among all-sized fish after fish removal, regardless of prior diet preference. Reduced piscivory among larger perch (>150 mm) and reduced zooplanktivory among smaller perch and roach (<150 mm) were also observed. Moreover, during a short period of high zooplankton biomass after fish removal, both perch and roach (all sizes) shifted their diet toward daphnids, which likely caused a decrease in daphnid population. We suggest that such change toward periodical zooplanktivory across fish species and size groups may lead to unexpectedly high top-down control by fish after lake restoration by fish removal.


Asunto(s)
Cyprinidae , Percas , Animales , Lagos , Ecosistema , Dieta/veterinaria
2.
Mol Ecol ; 31(4): 1093-1110, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34874594

RESUMEN

Understanding how eco-evolutionary processes and environmental factors drive population differentiation and adaptation are key challenges in evolutionary biology of relevance for biodiversity protection. Differentiation requires at least partial reproductive separation, which may result from different modes of isolation such as geographic isolation (allopatry) or isolation by distance (IBD), resistance (IBR), and environment (IBE). Despite that multiple modes might jointly influence differentiation, studies that compare the relative contributions are scarce. Using RADseq, we analyse neutral and adaptive genetic diversity and structure in 11 pike (Esox lucius) populations from contrasting environments along a latitudinal gradient (54.9-63.6°N), to investigate the relative effects of IBD, IBE and IBR, and to assess whether the effects differ between neutral and adaptive variation, or across structural levels. Patterns of neutral and adaptive variation differed, probably reflecting that they have been differently affected by stochastic and deterministic processes. The importance of the different modes of isolation differed between neutral and adaptive diversity, yet were consistent across structural levels. Neutral variation was influenced by interactions among all three modes of isolation, with IBR (seascape features) playing a central role, wheares adaptive variation was mainly influenced by IBE (environmental conditions). Taken together, this and previous studies suggest that it is common that multiple modes of isolation interactively shape patterns of genetic variation, and that their relative contributions differ among systems. To enable identification of general patterns and understand how various factors influence the relative contributions, it is important that several modes are simultaneously investigated in additional populations, species and environmental settings.


Asunto(s)
Esocidae , Variación Genética , Adaptación Fisiológica , Animales , Biodiversidad , Evolución Biológica , Esocidae/genética , Variación Genética/genética , Genética de Población
3.
J Anim Ecol ; 91(10): 2103-2112, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35899786

RESUMEN

Animal migration is one of the most spectacular and visible behavioural phenomena in nature with profound implications for a range of ecological and evolutionary processes. Successful migration hinges on the ability to exploit temporary resources (e.g. food) and evade threats (e.g. predators) as they arise, and thus the timing of migration is often regarded as a dominant predictor of individual migratory success. However, with the exception of intensively studied taxa (mainly birds), relatively few studies have investigated inter-individual annual and seasonal variation in migratory timing and performance, or tested predictions on how migration across high and low predation-risk habitats may exert selection on migratory timing. In particular, studies that assess the survival consequences of variation in migratory timing remain rare, which is most likely due to the logistical challenges associated with monitoring survival success and population-level characteristics simultaneously. Here, we address the above-mentioned questions using roach Rutilus rutilus, a fish that migrates from lakes characterised by high predation risk into low-risk streams during winter. Specifically, we used individual-based tracking of roach in two European lake systems over multiple migration periods (9 and 7 years respectively), to obtain highly detailed (year-round scheduling, repeat journeys and the fate of individuals) data on the variability/synchrony of migratory timing in spring and autumn respectively. We report seasonal differences in the variability of migratory timing, with lower variance and higher migration synchrony in spring lake arrival timing as compared to autumn lake departure timing. Furthermore, the timing of autumn migration is more variable across years than the timing of spring migration. Second, we find that later arrival to the lake habitat is positively associated with apparent survival from 1 year to the next, whereas we found no effect of lake departure timing on survival probability. These findings represent rare evidence showing how intraspecific variation in timing in migratory fish differs across years and seasons, and how variation in timing can translate into survival consequences for prey in systems characterised by high predation risk.


Asunto(s)
Migración Animal , Cyprinidae , Animales , Lagos , Conducta Predatoria , Estaciones del Año
4.
J Fish Biol ; 99(6): 2035-2039, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34431084

RESUMEN

We tested the feeding behaviour of small European perch (Perca fluviatilis) in a laboratory study during the first 24 h after handling and 23 mm passive integrated transponder (PIT) tag implantation. Feeding commenced almost immediately following tagging and overall feeding patterns were unaffected by tagging. However, untagged perch had more feeding events than PIT-tagged individuals. This discrepancy could be attributed to post-tagging effects or/and reduced room for food due to the presence of the tag in the body cavity.


Asunto(s)
Percas , Animales , Conducta Alimentaria
5.
Mar Policy ; 131: 104602, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34511704

RESUMEN

From 11 March to end of May 2020 a lockdown was imposed in Denmark due to the Covid-19 outbreak. Concurrently a 20% increase in sales of mandatory national angling licenses was reported in Denmark, suggesting an increase in angling participation. Here, we use data collected from a citizen science platform for recreational anglers to a) explore whether the increase in participation affected multiple characteristics of the anglers that registered to the citizen science platform in spring 2020, and b) explore changes in angling effort and catch patterns during the lockdown as reported to the platform. The results indicate that the platform was able to detect changes in the characteristics of the participants in the Danish recreational angling during the Covid-19 lockdown, i.e. participants were younger, more likely to live in urban areas, less experienced, stated angling as a less important hobby, and less likely to be from outside of Denmark. The spring 2020 participants did not conduct more fishing trips compared to previous years, but their effort patterns differed. The effort patterns revealed a shift in fishing activity from weekend to weekday and, during the day, a shift in fishing activity from midday to early evening. These changes most likely reflect the extraordinary conditions that most Danes experienced during the lockdown. We found relatively lower catch rates and a trend towards retaining more fish, among the participants that registered in spring 2020. The results are discussed in relation to biological implications and lessons learned about data collection from citizen science platforms.

6.
J Anim Ecol ; 89(11): 2596-2604, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32745243

RESUMEN

Different migratory species have evolved distinct migratory characteristics that improve fitness in their particular ecological niches. However, when such species hybridize, migratory traits from parental species can combine maladaptively and cause hybrids to fall between parental fitness peaks, with potential consequences for hybrid viability and species integrity. Here, we take advantage of a natural cross-breeding incident to study migratory behaviour in naturally occurring hybrids as well as in their parental species and explore links between migratory traits and predation risk. To achieve this, we used electronic tags and passive telemetry to record detailed individual migration patterns (timing and number of migratory trips) in two common freshwater fish species, roach Rutilus rutilus, common bream Abramis brama as well as their hybrids. Next, we scanned for tags regurgitated by a key avian predator (great cormorant Phalacrocorax carbo) at nearby roosting sites, allowing us to directly link migratory behaviour to predation risk in the wild. We found that hybrid individuals showed a higher number of short, multi-trip movements between lake and stream habitats as compared to both parental species. The mean date of first lake departure differed between bream and roach by more than 10 days, while hybrids departed in two distinct peaks that overlapped with the parental species' averages. Moreover, the probability of cormorant predation increased with multi-trip movement frequency across species and was higher for hybrids. Our data provide novel insights into hybrid viability, with links to predator-mediated ecological selection. Increased exposure to predators via maladaptive migratory behaviour reduces hybrid survival and can thereby reinforce species integrity.


Asunto(s)
Cyprinidae , Animales , Aves , Ecosistema , Lagos , Conducta Predatoria
7.
J Fish Biol ; 96(4): 1055-1059, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32060922

RESUMEN

Passive integrated transponder (PIT)-tagging is commonly used in behavioural studies of fish, although long-term evaluations of effects from tagging under natural conditions are scarce. We PIT-tagged common bream Abramis brama, European perch Perca fluviatilis, pike Esox lucius and roach Rutilus rutilus, released them in their lakes of origin and recaptured them after 103-3269 days. Overall, tagged fish did not differ in condition from non-tagged fish, except for small R. rutilus that had a lower length-specific body mass in one lake in 1 year. We conclude that PIT-tagging in general has negligible long-term effects on fish condition.


Asunto(s)
Sistemas de Identificación Animal/normas , Peces/fisiología , Tecnología de Sensores Remotos/normas , Animales , Cyprinidae , Esocidae , Lagos , Percas , Tecnología de Sensores Remotos/efectos adversos
8.
Biol Lett ; 13(7)2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28747533

RESUMEN

Species integrity can be challenged, and even eroded, if closely related species can hybridize and produce fertile offspring of comparable fitness to that of parental species. The maintenance of newly diverged or closely related species therefore hinges on the establishment and effectiveness of pre- and/or post-zygotic reproductive barriers. Ecological selection, including predation, is often presumed to contribute to reduced hybrid fitness, but field evidence for a predation cost to hybridization remains elusive. Here we provide proof-of-concept for predation on hybrids being a postzygotic barrier to gene flow in the wild. Cyprinid fishes commonly produce fertile, viable hybrid offspring and therefore make excellent study organisms to investigate ecological costs to hybrids. We electronically tagged two freshwater cyprinid fish species (roach Rutilus rutilus and bream Abramis brama) and their hybrids in 2005. Tagged fish were returned to their lake of origin, exposing them to natural predation risk from apex avian predators (great cormorant, Phalacrocorax carbo). Scanning for regurgitated tags under cormorant roosts 3-4 years later identified cormorant-killed individual fish and allowed us to directly test for a predation cost to hybrids in the wild. Hybrid individuals were found significantly more susceptible to cormorant predation than individuals from either parental species. Such ecological selection against hybrids contributes to species integrity, and can enhance species diversification.


Asunto(s)
Conducta Predatoria , Animales , Aves , Cyprinidae , Hibridación Genética , Lagos
9.
J Anim Ecol ; 84(5): 1187-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25823702

RESUMEN

1. Migration is a widespread phenomenon, with powerful ecological and evolutionary consequences. Morphological adaptations to reduce the energetic costs associated with migratory transport are commonly documented for migratory species. However, few studies have investigated whether variation in body morphology can be explained by variation in migratory strategy within a species. 2. We address this question in roach Rutilus rutilus, a partially migratory freshwater fish that migrates from lakes into streams during winter. We both compare body shape between populations that differ in migratory opportunity (open vs. closed lakes), and between individuals from a single population that vary in migratory propensity (migrants and residents from a partially migratory population). Following hydrodynamic theory, we posit that migrants should have a more shallow body depth, to reduce the costs associated with migrating into streams with higher flow conditions than the lakes the residents occupy all year round. 3. We find evidence both across and within populations to support our prediction, with individuals from open lakes and migrants from the partially migratory population having a more slender, shallow-bodied morphology than fish from closed lakes and all-year residents. 4. Our data suggest that a shallow body morphology is beneficial to migratory individuals and our study is one of the first to link migratory strategy and intraspecific variation in body shape.


Asunto(s)
Migración Animal , Conducta Animal/fisiología , Cyprinidae/anatomía & histología , Cyprinidae/fisiología , Animales , Lagos , Ríos , Estaciones del Año , Suecia
10.
Biol Lett ; 11(8)2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26311158

RESUMEN

Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags to record the migration of individual roach (Rutilus rutilus), a partially migratory fish, in the wild following exposure to manipulation of direct (predator presence/absence) and indirect (high/low roach density) perceived predation risk in experimental mesocosms. Following exposure, we released fish in their lake summer habitat and monitored individual migration to connected streams over an entire season. Individuals exposed to increased perceived direct predation risk (i.e. a live predator) showed a higher migratory propensity but no change in migratory timing, while indirect risk (i.e. roach density) affected timing but not propensity showing that elevated risk carried over to alter migratory behaviour in the wild. Our key finding demonstrates predator-driven migratory plasticity, highlighting the powerful role of predation risk for migratory decision-making and dynamics.


Asunto(s)
Cyprinidae/fisiología , Migración Animal , Animales , Esocidae , Densidad de Población , Dinámica Poblacional , Conducta Predatoria , Estaciones del Año
11.
Biol Lett ; 9(2): 20121178, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23445943

RESUMEN

The importance of predation risk in shaping patterns of animal migration is not well studied, mostly owing to difficulties in accurately quantifying predation risk for migratory versus resident individuals. Here, we present data from an extensive field study, which shows that migration in a freshwater fish (roach, Rutilus rutilus) that commonly migrates from lakes to streams during winter confers a significant survival benefit with respect to bird (cormorant, Phalacrocorax carbo spp.) predation. We tagged over 2000 individual fish in two Scandinavian lakes over 4 years and monitored migratory behaviour using passive telemetry. Next, we calculated the predation vulnerability of fish with differing migration strategies, by recovering data from passive integrated transponder tags of fish eaten by cormorants at communal roosts close to the lakes. We show that fish can reduce their predation risk from cormorants by migrating into streams, and that probability of being preyed upon by cormorants is positively related to the time individuals spend in the lake during winter. Our data add to the growing body of evidence that highlights the importance of predation for migratory dynamics, and, to our knowledge, is one of the first studies to directly quantify a predator avoidance benefit to migrants in the field.


Asunto(s)
Migración Animal , Cyprinidae/fisiología , Biología del Agua Dulce/métodos , Animales , Aves/fisiología , Dinamarca , Lagos , Modelos Lineales , Dinámica Poblacional , Conducta Predatoria , Factores de Riesgo , Estaciones del Año , Especificidad de la Especie , Análisis de Supervivencia , Factores de Tiempo
12.
R Soc Open Sci ; 10(7): 230408, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37476517

RESUMEN

It is well recognized that COVID-19 lockdowns impacted human interactions with natural ecosystems. One example is recreational fishing, which, in developed countries, involves approximately 10% of people. Fishing licence sales and observations at angling locations suggest that recreational fishing effort increased substantially during lockdowns. However, the extent and duration of this increase remain largely unknown. We used four years (2018-2021) of high-resolution data from a personal fish-finder device to explore the impact of COVID-19 lockdowns on angling effort in four European countries. We show that relative device use and angling effort increased 1.2-3.8-fold during March-May 2020 and generally remained elevated even at the end of 2021. Fishing during the first lockdown also became more frequent on weekdays. Statistical models explained 50-70% of the variation, suggesting that device use and angling effort were relatively consistent and predictable through space and time. Our study demonstrates that recreational fishing behaviour can change substantially and rapidly in response to societal shifts, with profound ecological, human well-being and economic implications. We also show the potential of angler devices and smartphone applications for high-resolution fishing effort analysis and encourage more extensive science and industry collaborations to take advantage of this information.

13.
Mov Ecol ; 11(1): 68, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880741

RESUMEN

Animal movement is a multifaceted process that occurs for multiple reasons with powerful consequences for food web and ecosystem dynamics. New paradigms and technical innovations have recently pervaded the field, providing increasingly powerful means to deliver fine-scale movement data, attracting renewed interest. Specifically in the aquatic environment, tracking with acoustic telemetry now provides integral spatiotemporal information to follow individual movements in the wild. Yet, this technology also holds great promise for experimental studies, enhancing our ability to truly establish cause-and-effect relationships. Here, we argue that ponds with well-defined borders (i.e. "islands in a sea of land") are particularly well suited for this purpose. To support our argument, we also discuss recent experiences from studies conducted in an innovative experimental infrastructure, composed of replicated ponds equipped with modern aquatic telemetry systems that allow for unparalleled insights into the movement patterns of individual animals.

14.
Rev Fish Biol Fish ; : 1-17, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37360579

RESUMEN

The global COVID-19 pandemic resulted in many jurisdictions implementing orders restricting the movements of people to inhibit virus transmission, with recreational angling often either not permitted or access to fisheries and/or related infrastructure being prevented. Following the lifting of restrictions, initial angler surveys and licence sales suggested increased participation and effort, and altered angler demographics, but with evidence remaining limited. Here, we overcome this evidence gap by identifying temporal changes in angling interest, licence sales, and angling effort in world regions by comparing data in the 'pre-pandemic' (up to and including 2019); 'acute pandemic' (2020) and 'COVID-acclimated' (2021) periods. We then identified how changes can inform the development of more resilient and sustainable recreational fisheries. Interest in angling (measured here as angling-related internet search term volumes) increased substantially in all regions during 2020. Patterns in licence sales revealed marked increases in some countries during 2020 but not in others. Where licence sales increased, this was rarely sustained in 2021; where there were declines, these related to fewer tourist anglers due to movement restrictions. Data from most countries indicated a younger demographic of people who participated in angling in 2020, including in urban areas, but this was not sustained in 2021. These short-lived changes in recreational angling indicate efforts to retain younger anglers could increase overall participation levels, where efforts can target education in appropriate angling practices and create more urban angling opportunities. These efforts would then provide recreational fisheries with greater resilience to cope with future global crises, including facilitating the ability of people to access angling opportunities during periods of high societal stress. Supplementary Information: The online version contains supplementary material available at 10.1007/s11160-023-09784-5.

15.
Biol Lett ; 8(1): 21-3, 2012 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21813551

RESUMEN

Migration is an important event in the life history of many animals, but there is considerable variation within populations in the timing and final destination. Such differential migration at the population level can be strongly determined by individuals showing different consistencies in migratory traits. By tagging individual cyprinid fish with uniquely coded electronic tags, and recording their winter migrations from lakes to streams for 6 consecutive years, we obtained highly detailed long-term information on the differential migration patterns of individuals. We found that individual migrants showed consistent site fidelities for over-wintering streams over multiple migratory seasons and that they were also consistent in their seasonal timing of migration. Our data also suggest that consistency itself can be considered as an individual trait, with migrants that exhibit consistent site fidelity also showing consistency in migratory timing. The finding of a mixture of both consistent and inconsistent individuals within a population furthers our understanding of intrapopulation variability in migration strategies, and we hypothesize that environmental variation can maintain such different strategies.


Asunto(s)
Migración Animal/fisiología , Cyprinidae/fisiología , Individualidad , Animales , Geografía , Modelos Logísticos , Ríos , Suecia , Factores de Tiempo
16.
PLoS One ; 17(8): e0271823, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35925974

RESUMEN

The recent return of Atlantic bluefin tuna to northern Europe following the recovery of the east Atlantic stock has sparked substantial public and scientific interest. This is particularly true for recreational anglers in Denmark, who often consider Atlantic bluefin tuna to be the catch of a lifetime. This attitude has previously sustained a substantial recreational fishery for bluefin tuna with annual tournaments in Denmark, which peaked in the 1950s before the subsequent collapse of the stock during the 1960s. Several scientific tagging programs have recruited recreational anglers in recent years to help catch and release tagged bluefin tuna. The anglers' investment of time and money in the scientific tagging projects indicate that the recreational fishery could recover in the future. However, the economic aspects of a potential future recreational bluefin tuna fishery remain unknown. We surveyed anglers participating in a scientific catch and release bluefin tuna fishery in Denmark across three years (2018-2020) and calculated the total annual expenditures associated with the activities. Additionally, we estimated the magnitude of the negative impact (i.e., incidental mortalities) on the bluefin tuna stock. Our results show that total annual expenditures by the recreational anglers approached 1,439,540€, totaling 4,318,620€ between 2018 and 2020. We found that recreational bluefin tuna anglers had mean annual expenditures directly related to the bluefin tuna fishing between 7,047€ and 2,176€ with an associated mortality impact on the stock of less than 1 tonne annually. By comparing the mortality impact to the expenditures, we estimate that each dead Atlantic bluefin tuna during the three study years generated 398,163€ in mean annual expenditures, equivalent to approximately 1636€ kg-1. Our study demonstrates significant economic expenditures among recreational anglers who target Atlantic bluefin tuna. This provides a clear example of how a recovery of marine natural capital and related ecosystem services can support development in the blue economy.


Asunto(s)
Explotaciones Pesqueras , Atún , Animales , Océano Atlántico , Ecosistema , Europa (Continente) , Gastos en Salud
17.
PNAS Nexus ; 1(3): pgac075, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36741432

RESUMEN

Human activities are the leading cause of biological invasions that cause ecologic and economic damage around the world. Aquatic invasive species (AIS) are often spread by recreational anglers who visit two or more bodies of water within a short time frame. Movement data from anglers are, therefore, critical to predicting, preventing, and monitoring the spread of AIS. However, the lack of broad-scale movement data has restricted efforts to large and popular lakes or small geographic extents. Here, we show that recreational fishing apps are an abundant, convenient, and relatively comprehensive source of "big" movement data across the contiguous United States. Our analyses revealed a dense network of angler movements that was dramatically more interconnected and extensive than the network that is formed naturally by rivers and streams. Short-distanced movements by anglers combined to form invasion superhighways that spanned the contiguous United States. We also identified possible invasion fronts and invaded hub lakes that may be superspreaders for two relatively common aquatic invaders. Our results provide unique insight into the national network through which AIS may be spread, increase opportunities for interjurisdictional coordination that is essential to addressing the problem of AIS, and highlight the important role that anglers can play in providing accurate data and preventing invasions. The advantages of mobile devices as both sources of data and a means of engaging the public in their shared responsibility to prevent invasions are probably general to all forms of tourism and recreation that contribute to the spread of invasive species.

18.
Sci Total Environ ; 804: 150050, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34509851

RESUMEN

Fish larvae play an important structuring role for their prey and show ontogenetic shifts in diet. Changes in diet differ between species and habitats and may also be affected by turbidity (eutrophication). We investigated the diet (stomach content) and the food selection (ratio of ingested prey and prey availability) of roach and perch larvae in a clear lake and of roach, perch and pikeperch larvae in a turbid lake multiple times during spring to autumn. The diet of the fish larvae changed with size, and for roach and perch larvae between the lakes. Coexisting species of fish larvae had different diets in the two lakes, pointing to resource partitioning; yet, in the clear lake, medium-sized larvae had a high diet overlap, suggesting a competitive relationship at this developmental stage. In the clear lake, roach larvae showed diel differentiation in diet, while perch demonstrated diet shifts between habitats, which probably aided in reducing competition and also evidenced an effect of light on the larval prey capture and/or predator-fish larvae interactions. In the turbid lake, roach and perch larvae did not reveal differences in diet between habitats or time of the day, owing to homogeneity of food items and poor light conditions. However, the diet of pikeperch larvae differed between day and night following daily variations in the abundance of its preferred prey. The roach larvae were highly selective for Bosmina, Daphnia and benthic cladocerans, perch larvae generally consumed what was available, while pikeperch primarily preyed on cyclopoid copepodites. We conclude that turbidity acted as a cover for fish larvae in the turbid lake. Under eutrophication-induced turbidity scenarios the effects of fish larvae on their prey are stronger (i.e., high selectivity for several resources) than that of larvae in clear waters, creating a negative feedback on the path to restore water clarity.


Asunto(s)
Lagos , Percas , Animales , Dieta , Preferencias Alimentarias , Larva , Agua
19.
Ecol Lett ; 14(9): 871-6, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21718420

RESUMEN

Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour.


Asunto(s)
Migración Animal , Cyprinidae/fisiología , Animales , Conducta Animal , Estaciones del Año , Suecia
20.
Proc Biol Sci ; 278(1710): 1414-8, 2011 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20980300

RESUMEN

Partial migration, in which a fraction of a population migrate and the rest remain resident, occurs in an extensive range of species and can have powerful ecological consequences. The question of what drives differences in individual migratory tendency is a contentious one. It has been shown that the timing of partial migration is based upon a trade-off between seasonal fluctuations in predation risk and growth potential. Phenotypic variation in either individual predation risk or growth potential should thus mediate the strength of the trade-off and ultimately predict patterns of partial migration at the individual level (i.e. which individuals migrate and which remain resident). We provide cross-population empirical support for the importance of one component of this model--individual predation risk--in predicting partial migration in wild populations of bream Abramis brama, a freshwater fish. Smaller, high-risk individuals migrate with a higher probability than larger, low-risk individuals, and we suggest that predation risk maintains size-dependent partial migration in this system.


Asunto(s)
Migración Animal , Cyprinidae/fisiología , Cadena Alimentaria , Animales , Cyprinidae/genética , Cyprinidae/crecimiento & desarrollo , Dinamarca , Variación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA