Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Methods ; 20(3): 448-458, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797410

RESUMEN

Stimulated Raman scattering (SRS) offers the ability to image metabolic dynamics with high signal-to-noise ratio. However, its spatial resolution is limited by the numerical aperture of the imaging objective and the scattering cross-section of molecules. To achieve super-resolved SRS imaging, we developed a deconvolution algorithm, adaptive moment estimation (Adam) optimization-based pointillism deconvolution (A-PoD) and demonstrated a spatial resolution of lower than 59 nm on the membrane of a single lipid droplet (LD). We applied A-PoD to spatially correlated multiphoton fluorescence imaging and deuterium oxide (D2O)-probed SRS (DO-SRS) imaging from diverse samples to compare nanoscopic distributions of proteins and lipids in cells and subcellular organelles. We successfully differentiated newly synthesized lipids in LDs using A-PoD-coupled DO-SRS. The A-PoD-enhanced DO-SRS imaging method was also applied to reveal metabolic changes in brain samples from Drosophila on different diets. This new approach allows us to quantitatively measure the nanoscopic colocalization of biomolecules and metabolic dynamics in organelles.


Asunto(s)
Microscopía , Espectrometría Raman , Microscopía/métodos , Espectrometría Raman/métodos , Proteínas/metabolismo , Lípidos
2.
J Biol Chem ; 300(5): 107291, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38636661

RESUMEN

Mutations in the adiponectin receptor 1 gene (AdipoR1) lead to retinitis pigmentosa and are associated with age-related macular degeneration. This study explores the effects of AdipoR1 gene deficiency in mice, revealing a striking decline in ω3 polyunsaturated fatty acids (PUFA), an increase in ω6 fatty acids, and elevated ceramides in the retina. The AdipoR1 deficiency impairs peroxisome proliferator-activated receptor α signaling, which is crucial for FA metabolism, particularly affecting proteins associated with FA transport and oxidation in the retina and retinal pigmented epithelium. Our lipidomic and proteomic analyses indicate changes that could affect membrane composition and viscosity through altered ω3 PUFA transport and synthesis, suggesting a potential influence of AdipoR1 on these properties. Furthermore, we noted a reduction in the Bardet-Biedl syndrome proteins, which are crucial for forming and maintaining photoreceptor outer segments that are PUFA-enriched ciliary structures. Diminution in Bardet-Biedl syndrome-proteins content combined with our electron microscopic observations raises the possibility that AdipoR1 deficiency might impair ciliary function. Treatment with inhibitors of ceramide synthesis led to substantial elevation of ω3 LC-PUFAs, alleviating photoreceptor degeneration and improving retinal function. These results serve as the proof of concept for a ceramide-targeted strategy to treat retinopathies linked to PUFA deficiency, including age-related macular degeneration.


Asunto(s)
Ceramidas , Receptores de Adiponectina , Retina , Animales , Receptores de Adiponectina/metabolismo , Receptores de Adiponectina/genética , Ratones , Ceramidas/metabolismo , Retina/metabolismo , Retina/patología , Ratones Noqueados , Ácidos Grasos Insaturados/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética
3.
Nature ; 556(7702): 510-514, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29670286

RESUMEN

Enhancers for embryonic stem (ES) cell-expressed genes and lineage-determining factors are characterized by conventional marks of enhancer activation in ES cells1-3, but it remains unclear whether enhancers destined to regulate cell-type-restricted transcription units might also have distinct signatures in ES cells. Here we show that cell-type-restricted enhancers are 'premarked' and activated as transcription units by the binding of one or two ES cell transcription factors, although they do not exhibit traditional enhancer epigenetic marks in ES cells, thus uncovering the initial temporal origins of cell-type-restricted enhancers. This premarking is required for future cell-type-restricted enhancer activity in the differentiated cells, with the strength of the ES cell signature being functionally important for the subsequent robustness of cell-type-restricted enhancer activation. We have experimentally validated this model in macrophage-restricted enhancers and neural precursor cell (NPC)-restricted enhancers using ES cell-derived macrophages or NPCs, edited to contain specific ES cell transcription factor motif deletions. DNA hydroxyl-methylation of enhancers in ES cells, determined by ES cell transcription factors, may serve as a potential molecular memory for subsequent enhancer activation in mature macrophages. These findings suggest that the massive repertoire of cell-type-restricted enhancers are essentially hierarchically and obligatorily premarked by binding of a defining ES cell transcription factor in ES cells, dictating the robustness of enhancer activation in mature cells.


Asunto(s)
Diferenciación Celular/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica/genética , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Pluripotentes/metabolismo , Factores de Transcripción/metabolismo , Animales , Epigénesis Genética , Femenino , Macrófagos/citología , Macrófagos/metabolismo , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Especificidad de Órganos , Células Madre Pluripotentes/citología , Reproducibilidad de los Resultados
4.
Mol Cell ; 59(6): 931-40, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26365380

RESUMEN

Glaucoma, a blinding neurodegenerative disease, whose risk factors include elevated intraocular pressure (IOP), age, and genetics, is characterized by accelerated and progressive retinal ganglion cell (RGC) death. Despite decades of research, the mechanism of RGC death in glaucoma is still unknown. Here, we demonstrate that the genetic effect of the SIX6 risk variant (rs33912345, His141Asn) is enhanced by another major POAG risk gene, p16INK4a (cyclin-dependent kinase inhibitor 2A, isoform INK4a). We further show that the upregulation of homozygous SIX6 risk alleles (CC) leads to an increase in p16INK4a expression, with subsequent cellular senescence, as evidenced in a mouse model of elevated IOP and in human POAG eyes. Our data indicate that SIX6 and/or IOP promotes POAG by directly increasing p16INK4a expression, leading to RGC senescence in adult human retinas. Our study provides important insights linking genetic susceptibility to the underlying mechanism of RGC death and provides a unified theory of glaucoma pathogenesis.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Glaucoma de Ángulo Abierto/metabolismo , Proteínas de Homeodominio/fisiología , Células Ganglionares de la Retina/fisiología , Transactivadores/fisiología , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Muerte Celular , Línea Celular , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/patología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Mutación Missense , Regulación hacia Arriba
5.
Exp Eye Res ; 225: 109254, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36150544

RESUMEN

Advanced age is the most established risk factor for developing age-related macular degeneration (AMD), one of the leading causes of visual impairment in the elderly, in Western and developed countries. Similarly, after middle age, there is an exponential increase in pathologic molecular and cellular events that can induce senescence, traditionally defined as an irreversible loss of the cells' ability to divide and most recently reported to also occur in select post-mitotic and terminally differentiated cells, such as neurons. Together these facts raise the question as to whether or not cellular senescence, may play a role in the development of AMD. A number of studies have reported the effect of ocular-relevant inducers of senescence using primarily in vitro models of poorly polarized, actively dividing retinal pigment epithelial (RPE) cell lines. However, in interpretating the data, the fidelity of these culture models to the RPE in vivo, must be considered. Fewer studies have explored the presence and/or impact of senescent cells in in vivo models that present with phenotypic features of AMD, leaving this an open field for further investigation. The goal of this review is to discuss current thoughts on the potential role of senescence in AMD development and progression, with consideration of the model systems used and their relevance to human disease.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Persona de Mediana Edad , Humanos , Anciano , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/metabolismo , Senescencia Celular
6.
Nature ; 531(7594): 323-8, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26958831

RESUMEN

The repair and regeneration of tissues using endogenous stem cells represents an ultimate goal in regenerative medicine. To our knowledge, human lens regeneration has not yet been demonstrated. Currently, the only treatment for cataracts, the leading cause of blindness worldwide, is to extract the cataractous lens and implant an artificial intraocular lens. However, this procedure poses notable risks of complications. Here we isolate lens epithelial stem/progenitor cells (LECs) in mammals and show that Pax6 and Bmi1 are required for LEC renewal. We design a surgical method of cataract removal that preserves endogenous LECs and achieves functional lens regeneration in rabbits and macaques, as well as in human infants with cataracts. Our method differs conceptually from current practice, as it preserves endogenous LECs and their natural environment maximally, and regenerates lenses with visual function. Our approach demonstrates a novel treatment strategy for cataracts and provides a new paradigm for tissue regeneration using endogenous stem cells.


Asunto(s)
Catarata/terapia , Cristalino/citología , Cristalino/fisiología , Recuperación de la Función , Regeneración/fisiología , Células Madre/citología , Visión Ocular/fisiología , Animales , Catarata/congénito , Catarata/patología , Catarata/fisiopatología , Extracción de Catarata , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Homeostasis , Humanos , Macaca , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/metabolismo , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Represoras/metabolismo , Células Madre/metabolismo
7.
Nature ; 514(7521): 257-61, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25119036

RESUMEN

Homeodomain proteins, described 30 years ago, exert essential roles in development as regulators of target gene expression; however, the molecular mechanisms underlying transcriptional activity of homeodomain factors remain poorly understood. Here investigation of a developmentally required POU-homeodomain transcription factor, Pit1 (also known as Pou1f1), has revealed that, unexpectedly, binding of Pit1-occupied enhancers to a nuclear matrin-3-rich network/architecture is a key event in effective activation of the Pit1-regulated enhancer/coding gene transcriptional program. Pit1 association with Satb1 (ref. 8) and ß-catenin is required for this tethering event. A naturally occurring, dominant negative, point mutation in human PIT1(R271W), causing combined pituitary hormone deficiency, results in loss of Pit1 association with ß-catenin and Satb1 and therefore the matrin-3-rich network, blocking Pit1-dependent enhancer/coding target gene activation. This defective activation can be rescued by artificial tethering of the mutant R271W Pit1 protein to the matrin-3 network, bypassing the pre-requisite association with ß-catenin and Satb1 otherwise required. The matrin-3 network-tethered R271W Pit1 mutant, but not the untethered protein, restores Pit1-dependent activation of the enhancers and recruitment of co-activators, exemplified by p300, causing both enhancer RNA transcription and target gene activation. These studies have thus revealed an unanticipated homeodomain factor/ß-catenin/Satb1-dependent localization of target gene regulatory enhancer regions to a subnuclear architectural structure that serves as an underlying mechanism by which an enhancer-bound homeodomain factor effectively activates developmental gene transcriptional programs.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Animales , Células Cultivadas , Proteínas de Homeodominio/genética , Humanos , Proteínas de Unión a la Región de Fijación a la Matriz/metabolismo , Ratones , Hipófisis/embriología , Hipófisis/metabolismo , Unión Proteica , Factor de Transcripción Pit-1/genética , Factor de Transcripción Pit-1/metabolismo , Transcripción Genética/genética , beta Catenina/metabolismo
8.
Development ; 143(24): 4701-4712, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27836962

RESUMEN

The macula and fovea located at the optical centre of the retina make primate visual perception unique among mammals. Our current understanding of retina ontogenesis is primarily based on animal models having no macula and no fovea. However, the pigeon retina and the human macula share a number of structural and functional properties that justify introducing the former as a new model system for retina development. Comparative transcriptome analysis of pigeon and chicken retinas at different embryonic stages reveals that the genetic programmes underlying cell differentiation are postponed in the pigeon until the end of the period of cell proliferation. We show that the late onset of neurogenesis has a profound effect on the developmental patterning of the pigeon retina, which is at odds with the current models of retina development. The uncoupling of tissue growth and neurogenesis is shown to result from the fact that the pigeon retinal epithelium is inhibitory to cell differentiation. The sum of these developmental features allows the pigeon to build a retina that displays the structural and functional traits typical of primate macula and fovea.


Asunto(s)
Columbidae/embriología , Neurogénesis/fisiología , Retina/embriología , Células Ganglionares de la Retina/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular , Embrión de Pollo , Perfilación de la Expresión Génica , Retina/citología , Retina/fisiología , Visión Ocular/fisiología , Agudeza Visual/fisiología
9.
Curr Diab Rep ; 19(9): 67, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31359159

RESUMEN

PURPOSE OF REVIEW: The goal of this paper is to review the latest findings in understanding the genetics of diabetic retinopathy. We highlight recent literature using a variety of molecular genetic techniques to identify variants which contribute to genetic susceptibility for diabetic retinopathy. RECENT FINDINGS: New genome-wide association study (GWAS) and whole-exome sequencing approaches have been utilized to identify both common and rare variants associated with diabetic retinopathy. While variants have been identified in isolated studies, no variants have been replicated across multiple studies. The identification of genetic factors associated with diabetic retinopathy remains elusive. This is due to the multifactorial nature of the disease, small sample sizes for GWAS, and difficulty in controlling covariates of the disease. Larger populations as well as utilization of new sequencing and data analysis techniques may lead to new insights into genetic factors associated with diabetic retinopathy in the future.


Asunto(s)
Retinopatía Diabética/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Farmacogenética , Secuenciación del Exoma
10.
Adv Exp Med Biol ; 1185: 39-43, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884586

RESUMEN

Age-related macular degeneration (AMD) is one of the leading causes of blindness worldwide. Long-chain and very long-chain polyunsaturated fatty acids (LC and VLC-PUFAs) have been linked to AMD pathogenesis through epidemiologic, biochemical, and genetic studies; however, the exact mechanisms of pathogenesis are unknown. Here, we review the scientific and clinical evidence supporting the role of PUFAs in AMD and discuss future directions for elucidating the roles of these fatty acids in AMD pathogenesis.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Degeneración Macular/patología , Humanos
11.
Adv Exp Med Biol ; 1185: 85-89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884593

RESUMEN

Inherited retinal diseases (IRD) encompass a wide spectrum of hereditary blindness with significant genetic heterogeneity. Therapeutics regulating gene expression on an RNA level have significant promise for treating IRD. In this review, we review the molecular basis of oligonucleotide therapeutics such as ribozymes, RNA interference (RNAi), antisense oligonucleotides (ASO), CRISPRi/a, and their applications to treatments of IRD.


Asunto(s)
ARN/uso terapéutico , Enfermedades de la Retina/terapia , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Humanos , Oligonucleótidos Antisentido/uso terapéutico , Interferencia de ARN , ARN Catalítico/uso terapéutico
12.
Proc Natl Acad Sci U S A ; 113(47): 13408-13413, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27810956

RESUMEN

As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin ß1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin ß1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin ß1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin ß1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non-cell-autonomous effects on angiogenesis. We conclude that epithelial integrin ß1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development.


Asunto(s)
Desarrollo Embrionario , Células Epiteliales/metabolismo , Integrina beta1/metabolismo , Neovascularización Fisiológica , Hipófisis/citología , Hipófisis/embriología , Animales , Animales Recién Nacidos , Recuento de Células , Diferenciación Celular , Desarrollo Embrionario/genética , Células Endoteliales/citología , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Integrasas/metabolismo , Ratones , Neovascularización Fisiológica/genética , Factores de Transcripción Paired Box/metabolismo , Pericitos/citología , Pericitos/metabolismo , Fenotipo , Hipófisis/metabolismo , Análisis de Secuencia de ARN , Factores de Tiempo , Factor C de Crecimiento Endotelial Vascular/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(5): 1380-5, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605944

RESUMEN

Substantial evidence supports the hypothesis that enhancers are critical regulators of cell-type determination, orchestrating both positive and negative transcriptional programs; however, the basic mechanisms by which enhancers orchestrate interactions with cognate promoters during activation and repression events remain incompletely understood. Here we report the required actions of LIM domain-binding protein 1 (LDB1)/cofactor of LIM homeodomain protein 2/nuclear LIM interactor, interacting with the enhancer-binding protein achaete-scute complex homolog 1, to mediate looping to target gene promoters and target gene regulation in corticotrope cells. LDB1-mediated enhancer:promoter looping appears to be required for both activation and repression of these target genes. Although LDB1-dependent activated genes are regulated at the level of transcriptional initiation, the LDB1-dependent repressed transcription units appear to be regulated primarily at the level of promoter pausing, with LDB1 regulating recruitment of metastasis-associated 1 family, member 2, a component of the nucleosome remodeling deacetylase complex, on these negative enhancers, required for the repressive enhancer function. These results indicate that LDB1-dependent looping events can deliver repressive cargo to cognate promoters to mediate promoter pausing events in a pituitary cell type.


Asunto(s)
Corticotrofos/fisiología , Proteínas de Unión al ADN/fisiología , Elementos de Facilitación Genéticos , Proteínas con Dominio LIM/fisiología , Regiones Promotoras Genéticas , Animales , Línea Celular , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/metabolismo , Ratones , Ratones Noqueados
15.
Nature ; 455(7209): 114-8, 2008 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-18690213

RESUMEN

Motility is a universal property of newly generated neurons. How cell migration is coordinately regulated with other aspects of neuron production is not well understood. Here we show that the proneural protein neurogenin 2 (Neurog2), which controls neurogenesis in the embryonic cerebral cortex, directly induces the expression of the small GTP-binding protein Rnd2 (ref. 3) in newly generated mouse cortical neurons before they initiate migration. Rnd2 silencing leads to a defect in radial migration of cortical neurons similar to that observed when the Neurog2 gene is deleted. Remarkably, restoring Rnd2 expression in Neurog2-mutant neurons is sufficient to rescue their ability to migrate. Our results identify Rnd2 as a novel essential regulator of neuronal migration in the cerebral cortex and demonstrate that Rnd2 is a major effector of Neurog2 function in the promotion of migration. Thus, a proneural protein controls the complex cellular behaviour of cell migration through a remarkably direct pathway involving the transcriptional activation of a small GTP-binding protein.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Movimiento Celular , Corteza Cerebral/citología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Regiones no Traducidas 3'/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Forma de la Célula , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Elementos de Facilitación Genéticos/genética , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Interferencia de ARN , Proteínas de Unión al GTP rho/deficiencia , Proteínas de Unión al GTP rho/genética
16.
Heliyon ; 10(7): e28640, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38590853

RESUMEN

Precise spatio-temporal expression of genes in organogenesis is regulated by the coordinated interplay of DNA elements such as promoter and enhancers present in the regulatory region of a given locus. POU1F1 transcription factor plays a crucial role in the development of somatotrophs, lactotrophs and thyrotrophs in the anterior pituitary gland, and in maintaining high expression of growth hormone, prolactin and TSH. In mouse, expression of POU1F1 is controlled by a region fenced by two CTCF sites, containing 5 upstream enhancer elements, designated E-A (5' to 3'). Elements C, B and A correspond to elements shown previously to play a role in pituitary development and hormonal expression; functional roles for elements E and D have not been reported. We performed comparative sequence analysis of this regulatory region and discovered that three elements, B, C and E, are present in all vertebrate groups except Agnatha. One very long (>2 kb) element (A) is unique to mammals suggesting a specific change in regulation of the gene in this group. Using DNA accessibility assay (ATAC-seq) we showed that conserved elements in anterior pituitary of four non-mammals are open, suggesting functionality as regulatory elements. We showed that, in many non-mammalian vertebrates, an additional upstream exon closely follows element E, leading to alternatively spliced transcripts. Here, element E functions as an alternative promoter, but in mammals this feature is lost, suggesting conversion of alternative promoter to enhancer. Our work shows that regulation of POU1F1 changed markedly during the course of vertebrate evolution, use of a low number of enhancer elements combined with alternative promoters in non-mammalian vertebrates being replaced by use of a unique combination of regulatory units in mammals. Most importantly, our work suggests that evolutionary conversion of alternate promoter to enhancer could be one of the evolutionary mechanisms of enhancer birth.

17.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496531

RESUMEN

Oxidative stress is a key factor causing mitochondrial dysfunction and retinal ganglion cell (RGC) death in glaucomatous neurodegeneration. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway is involved in mitochondrial protection, promoting RGC survival. Soluble adenylyl cyclase (sAC) is one of the key regulators of the cAMP/PKA signaling pathway. However, the precise molecular mechanisms underlying the sAC-mediated signaling pathway and mitochondrial protection in RGCs that counter oxidative stress are not well characterized. Here, we demonstrate that sAC plays a critical role in protecting RGC mitochondria from oxidative stress. Using mouse models of oxidative stress, we found that activating sAC protected RGCs, blocked AMP-activated protein kinase activation, inhibited glial activation, and improved visual function. Moreover, we found that this is the result of preserving mitochondrial dynamics (fusion and fission), promoting mitochondrial bioenergetics and biogenesis, and preventing metabolic stress and apoptotic cell death in a paraquat oxidative stress model. Notably, sAC activation ameliorated mitochondrial dysfunction in RGCs by enhancing mitochondrial biogenesis, preserving mitochondrial structure, and increasing ATP production in oxidatively stressed RGCs. These findings suggest that activating sAC enhances the mitochondrial structure and function in RGCs to counter oxidative stress, consequently promoting RGC protection. We propose that modulation of the sAC-mediated signaling pathway has therapeutic potential acting on RGC mitochondria for treating glaucoma and other retinal diseases.

18.
Antioxidants (Basel) ; 13(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38929182

RESUMEN

Oxidative stress is a key factor causing mitochondrial dysfunction and retinal ganglion cell (RGC) death in glaucomatous neurodegeneration. The cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway is involved in mitochondrial protection, promoting RGC survival. Soluble adenylyl cyclase (sAC) is a key regulator of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway, which is known to protect mitochondria and promote RGC survival. However, the precise molecular mechanisms connecting the sAC-mediated signaling pathway with mitochondrial protection in RGCs against oxidative stress are not well characterized. Here, we demonstrate that sAC plays a critical role in protecting RGC mitochondria from oxidative stress. Using mouse models of oxidative stress induced by ischemic injury and paraquat administration, we found that administration of bicarbonate, as an activator of sAC, protected RGCs, blocked AMP-activated protein kinase activation, inhibited glial activation, and improved visual function. Moreover, we found that this is the result of preserving mitochondrial dynamics (fusion and fission), promoting mitochondrial bioenergetics and biogenesis, and preventing metabolic stress and apoptotic cell death. Notably, the administration of bicarbonate ameliorated mitochondrial dysfunction in RGCs by enhancing mitochondrial biogenesis, preserving mitochondrial structure, and increasing ATP production in oxidatively stressed RGCs. These findings suggest that activating sAC enhances the mitochondrial structure and function in RGCs to counter oxidative stress, consequently promoting RGC protection. We propose that modulation of the sAC-mediated signaling pathway has therapeutic potential acting on RGC mitochondria for treating glaucoma and other retinal diseases.

19.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005302

RESUMEN

The retina is uniquely enriched in polyunsaturated fatty acids (PUFAs), which are primarily localized in cell membranes, where they govern membrane biophysical properties such as diffusion, permeability, domain formation, and curvature generation. During aging, alterations in lipid metabolism lead to reduced content of very long-chain PUFAs (VLC-PUFAs) in the retina, and this decline is associated with normal age-related visual decline and pathological age-related macular degeneration (AMD). ELOVL2 (Elongation of very-long-chain fatty acids-like 2) encodes a transmembrane protein that produces precursors to docosahexaenoic acid (DHA) and VLC-PUFAs, and methylation level of its promoter is currently the best predictor of chronological age. Here, we show that mice lacking ELOVL2-specific enzymatic activity (Elovl2 C234W ) have impaired contrast sensitivity and slower rod response recovery following bright light exposure. Intravitreal supplementation with the direct product of ELOVL2, 24:5n-3, in aged animals significantly improved visual function and reduced accumulation of ApoE, HTRA1 and complement proteins in sub-RPE deposits. At the molecular level, the gene expression pattern observed in retinas supplemented with 24:5n-3 exhibited a partial rejuvenation profile, including decreased expression of aging-related genes and a transcriptomic signature of younger retina. Finally, we present the first human genetic data showing significant association of several variants in the human ELOVL2 locus with the onset of intermediate AMD, underlying the translational significance of our findings. In sum, our study identifies novel therapeutic opportunities and defines ELOVL2 as a promising target for interventions aimed at preventing age-related vision loss.

20.
Nat Commun ; 15(1): 1599, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383552

RESUMEN

Lipids play crucial roles in many biological processes. Mapping spatial distributions and examining the metabolic dynamics of different lipid subtypes in cells and tissues are critical to better understanding their roles in aging and diseases. Commonly used imaging methods (such as mass spectrometry-based, fluorescence labeling, conventional optical imaging) can disrupt the native environment of cells/tissues, have limited spatial or spectral resolution, or cannot distinguish different lipid subtypes. Here we present a hyperspectral imaging platform that integrates a Penalized Reference Matching algorithm with Stimulated Raman Scattering (PRM-SRS) microscopy. Using this platform, we visualize and identify high density lipoprotein particles in human kidney, a high cholesterol to phosphatidylethanolamine ratio inside granule cells of mouse hippocampus, and subcellular distributions of sphingosine and cardiolipin in human brain. Our PRM-SRS displays unique advantages of enhanced chemical specificity, subcellular resolution, and fast data processing in distinguishing lipid subtypes in different organs and species.


Asunto(s)
Microscopía , Microscopía Óptica no Lineal , Animales , Ratones , Humanos , Microscopía Óptica no Lineal/métodos , Espectrometría Raman/métodos , Lípidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA