Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Cancer ; 130(5): 869-879, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38195888

RESUMEN

BACKGROUND: Previous studies have shown that functional systemic immunity is required for the efficacy of PD-1/PD-L1 blockade immunotherapies in cancer. Hence, systemic reprogramming of immunosuppressive dysfunctional myeloid cells could overcome resistance to cancer immunotherapy. METHODS: Reprogramming of tumour-associated myeloid cells with oleuropein was studied by quantitative differential proteomics, phenotypic and functional assays in mice and lung cancer patients. Combinations of oleuropein and two different delivery methods of anti-PD-1 antibodies were tested in colorectal cancer tumour models and in immunotherapy-resistant lung cancer models. RESULTS: Oleuropein treatment reprogrammed monocytic and granulocytic myeloid-derived suppressor cells, and tumour-associated macrophages towards differentiation of immunostimulatory subsets. Oleuropein regulated major differentiation programmes associated to immune modulation in myeloid cells, which potentiated T cell responses and PD-1 blockade. PD-1 antibodies were delivered by two different strategies, either systemically or expressed within tumours using a self-amplifying RNA vector. Combination anti-PD-1 therapies with oleuropein increased tumour infiltration by immunostimulatory dendritic cells in draining lymph nodes, leading to systemic antitumour T cell responses. Potent therapeutic activities were achieved in colon cancer and lung cancer models resistant to immunotherapies, even leading to complete tumour regression. DISCUSSION: Oleuropein significantly improves the outcome of PD-1/PD-L1 blockade immunotherapy strategies by reprogramming myeloid cells.


Asunto(s)
Antígeno B7-H1 , Glucósidos Iridoides , Neoplasias Pulmonares , Humanos , Animales , Ratones , Receptor de Muerte Celular Programada 1 , Inhibidores de Puntos de Control Inmunológico/farmacología , Células Mieloides , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Microambiente Tumoral
2.
Int J Mol Sci ; 22(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920699

RESUMEN

Immune checkpoint inhibitors (ICIs) have demonstrated remarkable efficacy in a growing number of malignancies. However, overcoming primary or secondary resistances is difficult due to pharmacokinetics issues and side effects associated with high systemic exposure. Local or regional expression of monoclonal antibodies (mAbs) using gene therapy vectors can alleviate this problem. In this work, we describe a high-capacity adenoviral vector (HCA-EFZP-aPDL1) equipped with a mifepristone-inducible system for the controlled expression of an anti-programmed death ligand 1 (PD-L1) blocking antibody. The vector was tested in an immune-competent mouse model of colorectal cancer based on implantation of MC38 cells. A single local administration of HCA-EFZP-aPDL1 in subcutaneous lesions led to a significant reduction in tumor growth with minimal release of the antibody in the circulation. When the vector was tested in a more stringent setting (rapidly progressing peritoneal carcinomatosis), the antitumor effect was marginal even in combination with other immune-stimulatory agents such as polyinosinic-polycytidylic acid (pI:C), blocking mAbs for T cell immunoglobulin, mucin-domain containing-3 (TIM-3) or agonistic mAbs for 4-1BB (CD137). In contrast, macrophage depletion by clodronate liposomes enhanced the efficacy of HCA-EFZP-aPDL1. These results highlight the importance of addressing macrophage-associated immunoregulatory mechanisms to overcome resistance to ICIs in the context of colorectal cancer.


Asunto(s)
Anticuerpos Bloqueadores/genética , Antígeno B7-H1/metabolismo , Carcinoma/terapia , Terapia Genética/métodos , Inmunoterapia/métodos , Macrófagos/inmunología , Neoplasias Peritoneales/terapia , Adenoviridae/genética , Animales , Anticuerpos Bloqueadores/inmunología , Antígeno B7-H1/antagonistas & inhibidores , Antígeno B7-H1/inmunología , Línea Celular , Femenino , Vectores Genéticos/genética , Inhibidores de Puntos de Control Inmunológico/inmunología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Factores Inmunológicos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Poli I-C/uso terapéutico
3.
Mol Ther ; 27(11): 1892-1905, 2019 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-31563534

RESUMEN

Immune checkpoint blockade has shown anti-cancer efficacy, but requires systemic administration of monoclonal antibodies (mAbs), often leading to adverse effects. To avoid toxicity, mAbs could be expressed locally in tumors. We developed adeno-associated virus (AAV) and Semliki Forest virus (SFV) vectors expressing anti-programmed death ligand 1 (aPDL1) mAb. When injected intratumorally in MC38 tumors, both viral vectors led to similar local mAb expression at 24 h, diminishing quickly in SFV-aPDL1-treated tumors. However, SFV-aPDL1 induced >40% complete regressions and was superior to AAV-aPDL1, as well as to aPDL1 mAb given systemically or locally. SFV-aPDL1 induced abscopal effects and was also efficacious against B16-ovalbumin (OVA). The higher SFV-aPDL1 antitumor activity could be related to local upregulation of interferon-stimulated genes because of SFV RNA replication. This was confirmed by combining local SFV-LacZ administration and systemic aPDL1 mAb, which provided higher antitumor effects than each separated agent. SFV-aPDL1 promoted tumor-specific CD8 T cells infiltration in both tumor models. In MC38, SFV-aPDL1 upregulated co-stimulatory markers (CD137/OX40) in tumor CD8 T cells, and its combination with anti-CD137 mAb showed more pronounced antitumor effects than each single agent. These results indicate that local transient expression of immunomodulatory mAbs using non-propagative RNA vectors inducing type I interferon (IFN-I) responses represents a potent and safe approach for cancer treatment.


Asunto(s)
Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Expresión Génica , Vectores Genéticos/genética , Neoplasias/genética , Neoplasias/inmunología , Virus ARN/genética , Animales , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos , Inmunomodulación/efectos de los fármacos , Inmunofenotipificación , Inyecciones Intralesiones , Ratones , Neoplasias/patología , Neoplasias/terapia , Proteínas Recombinantes de Fusión/genética , Virus de los Bosques Semliki/genética , Tasa de Supervivencia , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Carga Tumoral
4.
EMBO Rep ; 17(7): 1013-28, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27283940

RESUMEN

The role of long noncoding RNAs (lncRNAs) in viral infection is poorly studied. We have identified hepatitis C virus (HCV)-Stimulated lncRNAs (CSRs) by transcriptome analysis. Interestingly, two of these CSRs (PVT1 and UCA1) play relevant roles in tumorigenesis, providing a novel link between HCV infection and development of liver tumors. Expression of some CSRs seems induced directly by HCV, while others are upregulated by the antiviral response against the virus. In fact, activation of pathogen sensors induces the expression of CSR32/EGOT RIG-I and the RNA-activated kinase PKR sense HCV RNA, activate NF-κB and upregulate EGOT EGOT is increased in the liver of patients infected with HCV and after infection with influenza or Semliki Forest virus (SFV). Genome-wide guilt-by-association studies predict that EGOT may function as a negative regulator of the antiviral pathway. Accordingly, EGOT depletion increases the expression of several interferon-stimulated genes and leads to decreased replication of HCV and SFV Our results suggest that EGOT is a lncRNA induced after infection that increases viral replication by antagonizing the antiviral response.


Asunto(s)
Resistencia a la Enfermedad/genética , Hepacivirus/fisiología , Interacciones Huésped-Patógeno/genética , ARN Largo no Codificante/genética , Replicación Viral , Línea Celular Tumoral , Análisis por Conglomerados , Proteína 58 DEAD Box/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hepatitis C/genética , Hepatitis C/virología , Humanos , Interferón gamma/metabolismo , Espacio Intracelular , Sistemas de Lectura Abierta , Transporte de ARN , Receptores Toll-Like/metabolismo , Transcriptoma , eIF-2 Quinasa/metabolismo
5.
Cell Mol Life Sci ; 73(20): 3897-916, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27117550

RESUMEN

Alphavirus budding is driven by interactions between nucleocapsids assembled in the cytoplasm and envelope proteins present at the plasma membrane. So far, the expression of capsid and envelope proteins in infected cells has been considered an absolute requirement for alphavirus budding and propagation. In the present study, we show that Semliki Forest virus and Sindbis virus lacking the capsid gene can propagate in mammalian and insect cells. This propagation is mediated by the release of infectious microvesicles (iMVs), which are pleomorphic and have a larger size and density than wild-type virus. iMVs, which contain viral RNA inside and viral envelope proteins on their surface, are released at the plasma membrane and infect cells using the endocytic pathway in a similar way to wild-type virus. iMVs are not pathogenic in immunocompetent mice when injected intravenously, but can infect different organs like lungs and heart. Finally, we also show that alphavirus genomes without capsid can mediate the propagation of heterologous genes, making these vectors potentially interesting for gene therapy or vaccination studies. The minimalist infectious system described in this study shows that a self-replicating RNA able to express membrane proteins with binding and fusion properties is able to propagate, providing some insights into virus evolution.


Asunto(s)
Alphavirus/patogenicidad , Cápside/metabolismo , Membrana Celular/virología , Micropartículas Derivadas de Células/virología , Alphavirus/genética , Animales , Fusión Celular , Línea Celular , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/ultraestructura , Femenino , Genoma Viral , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones Endogámicos C57BL , Pruebas de Neutralización , ARN Viral/metabolismo , Virus de los Bosques Semliki/patogenicidad , Transfección , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo
6.
BMC Cancer ; 15: 620, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26347489

RESUMEN

BACKGROUND: Metastatic breast cancer is a major cause of death among women worldwide; therefore efficient therapeutic strategies are extremely needed. In this work we have developed a gene therapy- and bacteria-based combined neoadjuvant approach and evaluated its antitumor effect in a clinically relevant animal model of metastatic breast cancer. METHODS: 2×10(8) particles of a Semliki Forest virus vector expressing interleukin-12 (SFV-IL-12) and/or 2×10(7) units of an aroC (-) Samonella Typhimurium strain (LVR01) were injected into 4T1 tumor nodules orthotopically implanted in mice. Tumors were surgically resected and long-term survival was determined. IL-12 and interferon-γ were quantified by Enzyme-Linked ImmunoSorbent Assay, bacteria was visualized by inmunohistochemistry and the number of lung metastasis was calculated with a clonogenic assay. RESULTS: SFV-IL-12 and LVR01 timely inoculated and followed by surgical resection of tumors succeeded in complete inhibition of lethal lung metastasis and long-term survival in 90% of treated mice. The combined therapy was markedly synergistic compared to each treatment alone, since SFV-IL-12 monotherapy showed a potent antiangiogenic effect, being able to inhibit tumor growth and extend survival, but could not prevent establishment of distant metastasis and death of tumor-excised animals. On the other hand, LVR01 alone also showed a significant, although limited, antitumor potential, despite its ability to invade breast cancer cells and induce granulocyte recruitment. The efficacy of the combined therapy depended on the order in which both factors were administered; inasmuch the therapeutic effect was only observed when SFV-IL-12 was administered previous to LVR01, whereas administration of LVR01 before SFV-IL-12 had negligible antitumor activity. Moreover, pre-treatment with LVR01 seemed to suppress SFV-IL-12 antiangiogenic effects associated to lower IL-12 expression in this group. Re-challenged mice were unable to reject a second 4T1 tumor; however 100% of them could be totally cured by applying the same neoadjuvant combined regimen. To our knowledge, these are the most encouraging results obtained to date in a post-operatory setting using the highly aggressive 4T1 animal model. CONCLUSIONS: SFV-IL-12-based gene therapy combined with Salmonella LVR01 neoadjuvant administration has a synergic antitumor effect and may be a promising therapeutic option to prevent and/or eradicate pre-operatory metastasis in locally advanced breast cancer.


Asunto(s)
Neoplasias de la Mama/terapia , Regulación de la Expresión Génica/fisiología , Terapia Genética , Interleucina-12/genética , Neoplasias Pulmonares/terapia , Salmonella typhimurium/genética , Virus de los Bosques Semliki/genética , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Terapia Combinada , Ensayo de Inmunoadsorción Enzimática , Femenino , Vectores Genéticos , Inmunocompetencia , Inmunohistoquímica , Interferón gamma/sangre , Interleucina-12/sangre , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Terapia Neoadyuvante , Trasplante de Neoplasias , Fragmentos de Péptidos/sangre , Tasa de Supervivencia
7.
J Immunol ; 190(6): 2994-3004, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23401594

RESUMEN

Semliki Forest virus vectors expressing IL-12 (SFV-IL-12) were shown to induce potent antitumor responses against s.c. MC38 colon adenocarcinomas in immunocompetent mice. However, when MC38 tumors were implanted in liver, where colon tumors usually metastasize, SFV-IL-12 efficacy was significantly reduced. We reasoned that characterization of immune responses against intrahepatic tumors in responder and nonresponder animals could provide useful information for designing more potent antitumor strategies. Remarkably, SFV-IL-12 induced a high percentage of circulating tumor-specific CD8 T cells in all treated animals. Depletion studies showed that these cells were essential for SFV-IL-12 antitumor activity. However, in comparison with nonresponders, tumor-specific cells from responder mice acquired an effector-like phenotype significantly earlier, were recruited more efficiently to the liver, and, importantly, persisted for a longer period of time. All treated mice had high levels of functional specific CD8 T cells at 8 d posttreatment reflected by both in vivo killing and IFN-γ-production assays, but responder animals showed a more avid and persistent IFN-γ response. Interestingly, differences in immune responses between responders and nonresponders seemed to correlate with the immune status of the animals before treatment and were not due to the treatment itself. Mice that rejected tumors were protected against tumor rechallenge, indicating that sustained memory responses are required for an efficacious therapy. Interestingly, tumor-specific CD8 T cells of responder animals showed upregulation of IL-15Rα expression compared with nonresponders. These results suggest that SFV-IL-12 therapy could benefit from the use of strategies that could either upregulate IL-15Rα expression or activate this receptor.


Asunto(s)
Interleucina-12/biosíntesis , Neoplasias Hepáticas Experimentales/inmunología , Neoplasias Hepáticas Experimentales/prevención & control , Virus de los Bosques Semliki/inmunología , Virus de los Bosques Semliki/metabolismo , Adenocarcinoma/inmunología , Adenocarcinoma/prevención & control , Adenocarcinoma/virología , Infecciones por Alphavirus/inmunología , Infecciones por Alphavirus/prevención & control , Infecciones por Alphavirus/virología , Animales , Linfocitos T CD8-positivos/inmunología , Línea Celular , Células Cultivadas , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/prevención & control , Neoplasias Colorrectales/virología , Cricetinae , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Vectores Genéticos/metabolismo , Interleucina-12/genética , Neoplasias Hepáticas Experimentales/virología , Ratones , Ratones Endogámicos C57BL
8.
Cell Mol Life Sci ; 71(23): 4637-51, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24794511

RESUMEN

We report a new method to generate high-expressing mammalian cell lines in a quick and efficient way. For that purpose, we developed a master cell line (MCL) containing an inducible alphavirus vector expressing GFP integrated into the genome. In the MCL, recombinant RNA levels increased >4,600-fold after induction, due to a doxycycline-dependent RNA amplification loop. The MCL maintained inducibility and expression during 50 passages, being more efficient for protein expression than a conventional cell line. To generate new cell lines, mutant LoxP sites were inserted into the MCL, allowing transgene and selection gene exchange by Cre-directed recombination, leading to quick generation of inducible cell lines expressing proteins of therapeutic interest, like human cardiotrophin-1 and oncostatin-M at several mg/l/24 h. These proteins contained posttranslational modifications, showed bioactivity, and were efficiently purified. Remarkably, this system allowed production of toxic proteins, like oncostatin-M, since cells able to express it could be grown to the desired amount before induction. These cell lines were easily adapted to growth in suspension, making this methodology very attractive for therapeutic protein production.


Asunto(s)
Alphavirus/genética , Línea Celular/metabolismo , Clonación Molecular/métodos , Vectores Genéticos/genética , Proteínas Fluorescentes Verdes/genética , Transgenes , Animales , Técnicas de Cultivo de Célula , Línea Celular/citología , Línea Celular/virología , Cricetinae , Citocinas/genética , ADN/genética , Genoma , Células Hep G2 , Humanos , Oncostatina M/genética , ARN/genética , Proteínas Recombinantes/genética
9.
Clin Cancer Res ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935348

RESUMEN

An oncolytic adenovirus armed with tumor necrosis factor-α and interleukin-2 was tested in patients with advanced solid tumors. Antitumor effects were observed in both treated and non-treated lesions, leading to long-term survival in some patients. This clinical trial shows the potential of oncolytic virotherapy for patients refractory to standard therapies.

10.
Vaccines (Basel) ; 12(3)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38543952

RESUMEN

SARS-CoV-2 virus, the causative agent of COVID-19, has produced the largest pandemic in the 21st century, becoming a very serious health problem worldwide. To prevent COVID-19 disease and infection, a large number of vaccines have been developed and approved in record time, including new vaccines based on mRNA encapsulated in lipid nanoparticles. While mRNA-based vaccines have proven to be safe and effective, they are more expensive to produce compared to conventional vaccines. A special type of mRNA vaccine is based on self-amplifying RNA (saRNA) derived from the genome of RNA viruses, mainly alphaviruses. These saRNAs encode a viral replicase in addition to the antigen, usually the SARS-CoV-2 spike protein. The replicase can amplify the saRNA in transfected cells, potentially reducing the amount of RNA needed for vaccination and promoting interferon I responses that can enhance adaptive immunity. Preclinical studies with saRNA-based COVID-19 vaccines in diverse animal models have demonstrated the induction of robust protective immune responses, similar to conventional mRNA but at lower doses. Initial clinical trials have confirmed the safety and immunogenicity of saRNA-based vaccines in individuals that had previously received authorized COVID-19 vaccines. These findings have led to the recent approval of two of these vaccines by the national drug agencies of India and Japan, underscoring the promising potential of this technology.

11.
Antibodies (Basel) ; 13(2)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38804302

RESUMEN

Immune checkpoint blockade has changed the treatment paradigm for advanced solid tumors, but the overall response rates are still limited. The combination of checkpoint blockade with anti-4-1BB antibodies to stimulate tumor-infiltrating T cells has shown anti-tumor activity in human trials. However, the further clinical development of these antibodies has been hampered by significant off-tumor toxicities. Here, we generated an anti-4-1BB/EGFR/PD-L1 trispecific antibody consisting of a triple-targeting tandem trimerbody (TT) fused to an engineered silent Fc region. This antibody (IgTT-4E1-S) was designed to combine the blockade of the PD-L1/PD-1 axis with conditional 4-1BB costimulation specifically confined to the tumor microenvironment (TME). The antibody demonstrated simultaneous binding to purified EGFR, PD-L1, and 4-1BB in solution, effective blockade of the PD-L1/PD1 interaction, and potent 4-1BB-mediated costimulation, but only in the presence of EGFR-expressing cells. These results demonstrate the feasibility of IgTT-4E1-S specifically blocking the PD-L1/PD-1 axis and inducing EGFR-conditional 4-1BB agonist activity.

12.
EBioMedicine ; 103: 105132, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38677182

RESUMEN

BACKGROUND: SARS-CoV-2 infection is considered as a relapsing inflammatory process with a dysregulation of IL-6 signalling. Classic IL-6 signalling is thought to represent a defence mechanism against pathogens. In contrast, IL-6 trans-signalling has pro-inflammatory effects. In severe COVID-19, therapeutic strategies have focused on global inhibition of IL-6, with controversial results. We hypothesized that specific blockade of IL-6 trans-signalling could inhibit inflammatory response preserving the host defence activity inherent to IL-6 classic signalling. METHODS: To test the role of the specific IL-6 trans-signalling inhibition by sgp130Fc in short- and long-term consequences of COVID-19, we used the established K18-hACE2 transgenic mouse model. Histological as well as immunohistochemical analysis, and pro-inflammatory marker profiling were performed. To investigate IL-6 trans-signalling in human cells we used primary lung microvascular endothelial cells and fibroblasts in the presence/absence of sgp130Fc. FINDINGS: We report that targeting IL-6 trans-signalling by sgp130Fc attenuated SARS-CoV-2-related clinical symptoms and mortality. In surviving mice, the treatment caused a significant decrease in lung damage. In vitro, IL-6 trans-signalling induced strong and persisting JAK1/STAT3 activation in endothelial cells and lung fibroblasts with proinflammatory effects, which were attenuated by sgp130Fc. Our data also suggest that in those cells with scant amounts of IL-6R, the induction of gp130 and IL-6 by IL-6:sIL-6R complex sustains IL-6 trans-signalling. INTERPRETATION: IL-6 trans-signalling fosters progression of COVID-19, and suggests that specific blockade of this signalling mode could offer a promising alternative to mitigate both short- and long-term consequences without affecting the beneficial effects of IL-6 classic signalling. These results have implications for the development of new therapies of lung injury and endotheliopathy in COVID-19. FUNDING: The project was supported by ISCIII, Spain (COV-20/00792 to MB, PI23/01351 to MARH) and the European Commission-Next generation EU (European Union) (Regulation EU 2020/2094), through CSIC's Global Health Platform (PTI Salud Global, SGL2103029 to MB). PID2019-110587RB-I00 (MB) supported by MICIN/AEI/10.13039/501100011033/and PID2022-143034OB-I00 (MB) by MICIN/AEI/10.13039/501100011033/FEDER. MAR-H acknowledges support from ISCIII, Spain and the European Commission-Next generation EU (European Union), through CSIC's Global Health PTI.


Asunto(s)
COVID-19 , Receptor gp130 de Citocinas , Modelos Animales de Enfermedad , Interleucina-6 , Ratones Transgénicos , SARS-CoV-2 , Transducción de Señal , Animales , Interleucina-6/metabolismo , COVID-19/metabolismo , Humanos , Ratones , Transducción de Señal/efectos de los fármacos , Receptor gp130 de Citocinas/metabolismo , Receptor gp130 de Citocinas/antagonistas & inhibidores , Proteínas Recombinantes de Fusión/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , Células Endoteliales/metabolismo , Tratamiento Farmacológico de COVID-19 , Betacoronavirus , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Neumonía Viral/patología , Neumonía Viral/metabolismo , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/patología , Receptores de Interleucina-6/metabolismo , Receptores de Interleucina-6/antagonistas & inhibidores , Índice de Severidad de la Enfermedad
13.
Mol Ther ; 20(9): 1664-75, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22735380

RESUMEN

Intratumoral injection of Semliki Forest virus encoding interleukin-12 (SFV-IL-12) combines acute expression of IL-12 and stressful apoptosis of infected malignant cells. Agonist antibodies directed to costimulatory receptor CD137 (4-1BB) strongly amplify pre-existing cellular immune responses toward weak tumor antigens. In this study, we provide evidence for powerful synergistic effects of a combined strategy consisting of intratumoral injection of SFV-IL-12 and systemic delivery of agonist anti-CD137 monoclonal antibodies (mAbs), which was substantiated against poorly immunogenic B16 melanomas (B16-OVA and B16.F10) and TC-1 lung carcinomas. Effector CD8(ß)(+) T cells were sufficient to mediate complete tumor eradications. Accordingly, there was an intensely synergistic in vivo enhancement of cytotoxic T lymphocytes (CTL)-mediated immunity against the tumor antigens OVA and tyrosine-related protein-2 (TRP-2). This train of phenomena led to long-lasting tumor-specific immunity against rechallenge, attained transient control of the progression of concomitant tumor lesions that were not directly treated with SFV-IL-12 and caused autoimmune vitiligo. Importantly, we found that SFV-IL-12 intratumoral injection induces bright expression of CD137 on most tumor-infiltrating CD8(+) T lymphocytes, thereby providing more abundant targets for the action of the agonist antibody. This efficacious combinatorial immunotherapy strategy offers feasibility for clinical translation since anti-CD137 mAbs are already undergoing clinical trials and development of clinical-grade SFV-IL-12 vectors is in progress.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Carcinoma/terapia , Interleucina-12/inmunología , Neoplasias Pulmonares/terapia , Melanoma Experimental/terapia , Virus de los Bosques Semliki/inmunología , Neoplasias Cutáneas/terapia , Animales , Anticuerpos Monoclonales/administración & dosificación , Apoptosis/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Carcinoma/inmunología , Carcinoma/mortalidad , Línea Celular Tumoral , Cricetinae , Expresión Génica/efectos de los fármacos , Inmunidad Celular/efectos de los fármacos , Memoria Inmunológica/efectos de los fármacos , Inmunoterapia/métodos , Inyecciones Intralesiones , Inyecciones Intravenosas , Interleucina-12/administración & dosificación , Interleucina-12/genética , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/inmunología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/mortalidad , Melanoma Experimental/inmunología , Melanoma Experimental/mortalidad , Ratones , Virus de los Bosques Semliki/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/mortalidad , Tasa de Supervivencia , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología
14.
Cancers (Basel) ; 15(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37190279

RESUMEN

Cancer therapy has experienced a breakthrough with the use of immune checkpoint inhibitors (ICIs) based on monoclonal antibodies (mAbs), which are able to unleash immune responses against tumors refractory to other therapies. Despite the great advancement that ICIs represent, most patients with gastrointestinal tumors have not benefited from this therapy. In addition, ICIs often induce adverse effects that are related to their systemic use. Local administration of ICIs in tumors could concentrate their effect in the malignant tissue and provide a higher safety profile. A new and attractive approach for local delivery of ICIs is the use of gene therapy vectors to express these blocking antibodies in tumor cells. Several vectors have been evaluated in preclinical models of gastrointestinal tumors to express ICIs against PD-1, PD-L1, and CTLA-4, among other immune checkpoints, with promising results. Vectors used in these settings include oncolytic viruses, self-replicating RNA vectors, and non-replicative viral and non-viral vectors. The use of viral vectors, especially when they have replication capacity, provides an additional adjuvant effect that has been shown to enhance antitumor responses. This review covers the most recent studies involving the use of gene therapy vectors to deliver ICIs to gastrointestinal tumors.

15.
Int Rev Cell Mol Biol ; 379: 43-86, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37541727

RESUMEN

Immune checkpoint inhibitors (ICIs) based on monoclonal antibodies represent a breakthrough for the treatment of cancer. However, their efficacy varies among tumor types and patients, and they can lead to adverse effects due to on-target/off-tumor activity, since they are administered systemically at high doses. An alternative and attractive approach for the delivery of ICIs is the use of gene therapy vectors able to express them in vivo. This review focuses on the most recent studies using viral vectors able to express ICIs locally or systemically in preclinical models of cancer. These vectors include non-replicating viruses, oncolytic viruses able to propagate specifically in tumor cells and destroy them, and self-amplifying RNA vectors, armed with different formats of antibodies against immune checkpoints. Non-replicating vectors usually lead to long-term ICI expression, potentially eliminating the need for repeated administration. Vectors with replication capacity, although they have a shorter window of expression, can induce inflammation which enhances the antitumor effect. Finally, these engineered vectors can be used in combination with other immunostimulatory molecules or with CAR-T cells, further boosting the antitumor immune responses.


Asunto(s)
Neoplasias , Virus Oncolíticos , Humanos , Neoplasias/patología , Virus Oncolíticos/genética , Vectores Genéticos , Anticuerpos Monoclonales , Terapia Genética
16.
ACS Chem Neurosci ; 14(11): 2074-2088, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-37236204

RESUMEN

c-Jun N-terminal kinases (JNKs) are a family of protein kinases activated by a myriad of stimuli consequently modulating a vast range of biological processes. In human postmortem brain samples affected with Alzheimer's disease (AD), JNK overactivation has been described; however, its role in AD onset and progression is still under debate. One of the earliest affected areas in the pathology is the entorhinal cortex (EC). Noteworthy, the deterioration of the projection from EC to hippocampus (Hp) point toward the idea that the connection between EC and Hp is lost in AD. Thus, the main objective of the present work is to address if JNK3 overexpression in the EC could impact on the hippocampus, inducing cognitive deficits. Data obtained in the present work suggest that JNK3 overexpression in the EC influences the Hp leading to cognitive impairment. Moreover, proinflammatory cytokine expression and Tau immunoreactivity were increased both in the EC and in the Hp. Therefore, activation of inflammatory signaling and induction of Tau aberrant misfolding caused by JNK3 could be responsible for the observed cognitive impairment. Altogether, JNK3 overexpression in the EC may impact on the Hp inducing cognitive dysfunction and underlie the alterations observed in AD.


Asunto(s)
Enfermedad de Alzheimer , Trastornos del Conocimiento , Disfunción Cognitiva , Humanos , Corteza Entorrinal/metabolismo , Corteza Entorrinal/patología , Hipocampo/metabolismo , Enfermedad de Alzheimer/metabolismo , Trastornos del Conocimiento/metabolismo , Disfunción Cognitiva/metabolismo , Cognición , Proteínas tau/metabolismo
17.
ACS Chem Neurosci ; 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36976903

RESUMEN

c-Jun N-terminal kinase 3 (JNK3) is suggested to play a key role in neurodegenerative disorders, especially in Alzheimer's disease (AD). However, it remains unclear whether JNK or amyloid ß (Aß) appears first in the disease onset. Postmortem brain tissues from four dementia subtypes of patients (frontotemporal dementia, Lewy body dementia, vascular dementia, and AD) were used to measure activated JNK (pJNK) and Aß levels. pJNK expression is significantly increased in AD; however, similar pJNK expression was found in other dementias. Furthermore, there was a significant correlation, co-localization, and direct interaction between pJNK expression and Aß levels in AD. Significant increased levels of pJNK were also found in Tg2576 mice, a model of AD. In this line, Aß42 intracerebroventricular injection in wild-type mice was able to induce a significant elevation of pJNK levels. JNK3 overexpression, achieved by intrahippocampal injection of an adeno-associated viral vector expressing this protein, was enough to induce cognitive deficiencies and precipitate Tau aberrant misfolding in Tg2576 mice without accelerating amyloid pathology. JNK3 overexpression may therefore be triggered by increased Aß. The latter, together with subsequent involvement of Tau pathology, may be underlying cognitive alterations in early stages of AD.

18.
Cancer Lett ; 561: 216139, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001752

RESUMEN

Despite the success of immune checkpoint blockade for cancer therapy, many patients do not respond adequately. We aimed to improve this therapy by optimizing both the antibodies and their delivery route, using small monodomain antibodies (nanobodies) delivered locally with a self-amplifying RNA (saRNA) vector based on Semliki Forest virus (SFV). We generated nanobodies against PD-1 and PD-L1 able to inhibit both human and mouse interactions. Incorporation of a dimerization domain reduced PD-1/PD-L1 IC50 by 8- and 40-fold for anti-PD-L1 and anti-PD-1 nanobodies, respectively. SFV viral particles expressing dimeric nanobodies showed a potent antitumor response in the MC38 model, resulting in >50% complete regressions, and showed better therapeutic efficacy compared to vectors expressing conventional antibodies. These effects were also observed in the B16 melanoma model. Although a short-term expression of nanobodies was observed due to the cytopathic nature of the saRNA vector, it was enough to generate a strong proinflammatory response in tumors, increasing infiltration of NK and CD8+ T cells. Delivery of the SFV vector expressing dimeric nanobodies by local plasmid electroporation, which could be more easily translated to the clinic, also showed a potent antitumor effect.


Asunto(s)
Neoplasias , Anticuerpos de Dominio Único , Animales , Humanos , Ratones , Antígeno B7-H1/genética , Linfocitos T CD8-positivos , Virus de los Bosques Semliki/genética , Anticuerpos de Dominio Único/genética , Receptor de Muerte Celular Programada 1/metabolismo
19.
Aging Cell ; 22(3): e13771, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36704839

RESUMEN

The enormous societal impact of the ongoing COVID-19 pandemic has been particularly harsh for some social groups, such as the elderly. Recently, it has been suggested that senescent cells could play a central role in pathogenesis by exacerbating the pro-inflammatory immune response against SARS-CoV-2. Therefore, the selective clearance of senescent cells by senolytic drugs may be useful as a therapy to ameliorate the symptoms of COVID-19 in some cases. Using the established COVID-19 murine model K18-hACE2, we demonstrated that a combination of the senolytics dasatinib and quercetin (D/Q) significantly reduced SARS-CoV-2-related mortality, delayed its onset, and reduced the number of other clinical symptoms. The increase in senescent markers that we detected in the lungs in response to SARS-CoV-2 may be related to the post-COVID-19 sequelae described to date. These results place senescent cells as central targets for the treatment of COVID-19, and make D/Q a new and promising therapeutic tool.


Asunto(s)
COVID-19 , Quercetina , Ratones , Humanos , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Dasatinib/farmacología , Dasatinib/uso terapéutico , SARS-CoV-2 , Senescencia Celular , Senoterapéuticos , Pandemias
20.
Front Cell Infect Microbiol ; 13: 1110467, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761900

RESUMEN

Background: The main objective was to evaluate the efficacy of intranasal photodynamic therapy (PDT) in SARS-CoV-2 mildly symptomatic carriers on decreasing the infectivity period. SARS-CoV-2-specific immune-stimulating effects and safety were also analysed. Methods: We performed a randomized, placebo-controlled, clinical trial in a tertiary hospital (NCT05184205). Patients with a positive SARS-CoV-2 PCR in the last 48 hours were recruited and aleatorily assigned to PDT or placebo. Patients with pneumonia were excluded. Participants and investigators were masked to group assignment. The primary outcome was the reduction in in vitro infectivity of nasopharyngeal samples at days 3 and 7. Additional outcomes included safety assessment and quantification of humoral and T-cell immune-responses. Findings: Patients were recruited between December 2021 and February 2022. Most were previously healthy adults vaccinated against COVID-19 and most carried Omicron variant. 38 patients were assigned to placebo and 37 to PDT. Intranasal PDT reduced infectivity at day 3 post-treatment when compared to placebo with a ß-coefficient of -812.2 (CI95%= -478660 - -1.3, p<0.05) infectivity arbitrary units. The probability of becoming PCR negative (ct>34) at day 7 was higher on the PDT-group, with an OR of 0.15 (CI95%=0.04-0.58). There was a decay in anti-Spike titre and specific SARS-CoV-2 T cell immunity in the placebo group 10 and 20 weeks after infection, but not in the PDT-group. No serious adverse events were reported. Interpretation: Intranasal-PDT is safe in pauci-symptomatic COVID-19 patients, it reduces SARS-CoV-2 infectivity and decelerates the decline SARS-CoV-2 specific immune-responses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Linfocitos T , Nariz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA