Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(11)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35217532

RESUMEN

The impacts of interferon (IFN) signaling on COVID-19 pathology are multiple, with both protective and harmful effects being documented. We report here a multiomics investigation of systemic IFN signaling in hospitalized COVID-19 patients, defining the multiomics biosignatures associated with varying levels of 12 different type I, II, and III IFNs. The antiviral transcriptional response in circulating immune cells is strongly associated with a specific subset of IFNs, most prominently IFNA2 and IFNG. In contrast, proteomics signatures indicative of endothelial damage and platelet activation associate with high levels of IFNB1 and IFNA6. Seroconversion and time since hospitalization associate with a significant decrease in a specific subset of IFNs. Additionally, differential IFN subtype production is linked to distinct constellations of circulating myeloid and lymphoid immune cell types. Each IFN has a unique metabolic signature, with IFNG being the most associated with activation of the kynurenine pathway. IFNs also show differential relationships with clinical markers of poor prognosis and disease severity. For example, whereas IFNG has the strongest association with C-reactive protein and other immune markers of poor prognosis, IFNB1 associates with increased neutrophil to lymphocyte ratio, a marker of late severe disease. Altogether, these results reveal specialized IFN action in COVID-19, with potential diagnostic and therapeutic implications.


Asunto(s)
Sangre/metabolismo , COVID-19/inmunología , Interferones/sangre , Proteoma , Transcriptoma , COVID-19/sangre , Estudios de Casos y Controles , Conjuntos de Datos como Asunto , Humanos , Pacientes Internos
2.
Proc Natl Acad Sci U S A ; 116(48): 24231-24241, 2019 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-31699819

RESUMEN

Trisomy 21 (T21) causes Down syndrome (DS), a condition characterized by high prevalence of autoimmune disorders. However, the molecular and cellular mechanisms driving this phenotype remain unclear. Building upon our previous finding that T cells from people with DS show increased expression of interferon (IFN)-stimulated genes, we have completed a comprehensive characterization of the peripheral T cell compartment in adults with DS with and without autoimmune conditions. CD8+ T cells from adults with DS are depleted of naïve subsets and enriched for differentiated subsets, express higher levels of markers of activation and senescence (e.g., IFN-γ, Granzyme B, PD-1, KLRG1), and overproduce cytokines tied to autoimmunity (e.g., TNF-α). Conventional CD4+ T cells display increased differentiation, polarization toward the Th1 and Th1/17 states, and overproduction of the autoimmunity-related cytokines IL-17A and IL-22. Plasma cytokine analysis confirms elevation of multiple autoimmunity-related cytokines (e.g., TNF-α, IL17A-D, IL-22) in people with DS, independent of diagnosis of autoimmunity. Although Tregs are more abundant in DS, functional assays show that CD8+ and CD4+ effector T cells with T21 are resistant to Treg-mediated suppression, regardless of Treg karyotype. Transcriptome analysis of white blood cells and T cells reveals strong signatures of T cell differentiation and activation that correlate positively with IFN hyperactivity. Finally, mass cytometry analysis of 8 IFN-inducible phosphoepitopes demonstrates that T cell subsets with T21 show elevated levels of basal IFN signaling and hypersensitivity to IFN-α stimulation. Therefore, these results point to T cell dysregulation associated with IFN hyperactivity as a contributor to autoimmunity in DS.


Asunto(s)
Autoinmunidad/genética , Síndrome de Down/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Autoinmunidad/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Estudios de Casos y Controles , Diferenciación Celular/fisiología , Linaje de la Célula , Senescencia Celular , Femenino , Perfilación de la Expresión Génica , Humanos , Interferón-alfa/farmacología , Interferón gamma/inmunología , Activación de Linfocitos/genética , Masculino , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Adulto Joven
3.
Nat Commun ; 15(1): 5473, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942750

RESUMEN

Individuals with Down syndrome, the genetic condition caused by trisomy 21, exhibit strong inter-individual variability in terms of developmental phenotypes and diagnosis of co-occurring conditions. The mechanisms underlying this variable developmental and clinical presentation await elucidation. We report an investigation of human chromosome 21 gene overexpression in hundreds of research participants with Down syndrome, which led to the identification of two major subsets of co-expressed genes. Using clustering analyses, we identified three main molecular subtypes of trisomy 21, based on differential overexpression patterns of chromosome 21 genes. We subsequently performed multiomics comparative analyses among subtypes using whole blood transcriptomes, plasma proteomes and metabolomes, and immune cell profiles. These efforts revealed strong heterogeneity in dysregulation of key pathophysiological processes across the three subtypes, underscored by differential multiomics signatures related to inflammation, immunity, cell growth and proliferation, and metabolism. We also observed distinct patterns of immune cell changes across subtypes. These findings provide insights into the molecular heterogeneity of trisomy 21 and lay the foundation for the development of personalized medicine approaches for the clinical management of Down syndrome.


Asunto(s)
Cromosomas Humanos Par 21 , Síndrome de Down , Síndrome de Down/genética , Síndrome de Down/inmunología , Humanos , Cromosomas Humanos Par 21/genética , Femenino , Transcriptoma , Masculino , Niño , Preescolar , Adulto , Perfilación de la Expresión Génica , Proteoma/metabolismo , Adolescente
4.
Cell Rep ; 43(8): 114599, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39120971

RESUMEN

Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by delayed neurodevelopment, accelerated aging, and increased risk of many co-occurring conditions. Hypoxemia and dysregulated hematopoiesis have been documented in DS, but the underlying mechanisms and clinical consequences remain ill defined. We report an integrative multi-omic analysis of ∼400 research participants showing that people with DS display transcriptomic signatures indicative of elevated heme metabolism and increased hypoxic signaling across the lifespan, along with chronic overproduction of erythropoietin, elevated biomarkers of tissue-specific hypoxia, and hallmarks of stress erythropoiesis. Elevated heme metabolism, transcriptional signatures of hypoxia, and stress erythropoiesis are conserved in a mouse model of DS and associated with overexpression of select triplicated genes. These alterations are independent of the hyperactive interferon signaling characteristic of DS. These results reveal lifelong dysregulation of key oxygen-related processes that could contribute to the developmental and clinical hallmarks of DS.


Asunto(s)
Síndrome de Down , Eritropoyesis , Hemo , Hipoxia , Transducción de Señal , Síndrome de Down/metabolismo , Síndrome de Down/patología , Síndrome de Down/genética , Hemo/metabolismo , Humanos , Animales , Ratones , Hipoxia/metabolismo , Masculino , Femenino , Transcriptoma/genética , Niño , Adulto , Estrés Fisiológico , Eritropoyetina/metabolismo , Adolescente , Preescolar
5.
medRxiv ; 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-38946973

RESUMEN

Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmune disorders and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined. Here, we report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS. We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. We then report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints. Analysis of the first 10 participants to complete the 16-week study shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS. ClinicalTrials.gov identifier: NCT04246372.

6.
Cell Death Differ ; 30(4): 952-965, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36681780

RESUMEN

The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Ratones , Animales , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Activación Transcripcional/genética , Factores de Transcripción/metabolismo , Diferenciación Celular/genética , Neoplasias/genética , Silenciador del Gen
7.
Sci Adv ; 9(26): eadg6218, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37379383

RESUMEN

Individuals with Down syndrome (DS) display chronic hyperactivation of interferon signaling. However, the clinical impacts of interferon hyperactivity in DS are ill-defined. Here, we describe a multiomics investigation of interferon signaling in hundreds of individuals with DS. Using interferon scores derived from the whole blood transcriptome, we defined the proteomic, immune, metabolic, and clinical features associated with interferon hyperactivity in DS. Interferon hyperactivity associates with a distinct proinflammatory phenotype and dysregulation of major growth signaling and morphogenic pathways. Individuals with the highest interferon activity display the strongest remodeling of the peripheral immune system, including increased cytotoxic T cells, B cell depletion, and monocyte activation. Interferon hyperactivity accompanies key metabolic changes, most prominently dysregulated tryptophan catabolism. High interferon signaling stratifies a subpopulation with elevated rates of congenital heart disease and autoimmunity. Last, a longitudinal case study demonstrated that JAK inhibition normalizes interferon signatures with therapeutic benefit in DS. Together, these results justify the testing of immune-modulatory therapies in DS.


Asunto(s)
Síndrome de Down , Humanos , Síndrome de Down/tratamiento farmacológico , Síndrome de Down/complicaciones , Síndrome de Down/genética , Proteómica , Interferones/metabolismo , Autoinmunidad , Transducción de Señal/genética
8.
Nat Genet ; 55(6): 1034-1047, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37277650

RESUMEN

Down syndrome (DS), the genetic condition caused by trisomy 21, is characterized by variable cognitive impairment, immune dysregulation, dysmorphogenesis and increased prevalence of diverse co-occurring conditions. The mechanisms by which trisomy 21 causes these effects remain largely unknown. We demonstrate that triplication of the interferon receptor (IFNR) gene cluster on chromosome 21 is necessary for multiple phenotypes in a mouse model of DS. Whole-blood transcriptome analysis demonstrated that IFNR overexpression associates with chronic interferon hyperactivity and inflammation in people with DS. To define the contribution of this locus to DS phenotypes, we used genome editing to correct its copy number in a mouse model of DS, which normalized antiviral responses, prevented heart malformations, ameliorated developmental delays, improved cognition and attenuated craniofacial anomalies. Triplication of the Ifnr locus modulates hallmarks of DS in mice, suggesting that trisomy 21 elicits an interferonopathy potentially amenable to therapeutic intervention.


Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Animales , Ratones , Síndrome de Down/genética , Receptores de Interferón/genética , Interferones , Fenotipo , Modelos Animales de Enfermedad
9.
Cell Rep ; 41(13): 111883, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577365

RESUMEN

Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), is characterized by stunted growth, cognitive impairment, and increased risk of diverse neurological conditions. Although signs of lifelong neurodegeneration are well documented in DS, the mechanisms underlying this phenotype await elucidation. Here we report a multi-omics analysis of neurodegeneration and neuroinflammation biomarkers, plasma proteomics, and immune profiling in a diverse cohort of more than 400 research participants. We identified depletion of insulin growth factor 1 (IGF1), a master regulator of growth and brain development, as the top biosignature associated with neurodegeneration in DS. Individuals with T21 display chronic IGF1 deficiency downstream of growth hormone production, associated with a specific inflammatory profile involving elevated tumor necrosis factor alpha (TNF-α). Shorter children with DS show stronger IGF1 deficiency, elevated biomarkers of neurodegeneration, and increased prevalence of autism and other conditions. These results point to disruption of IGF1 signaling as a potential contributor to stunted growth and neurodegeneration in DS.


Asunto(s)
Síndrome de Down , Humanos , Biomarcadores/metabolismo , Síndrome de Down/genética , Trastornos del Crecimiento/genética , Factor I del Crecimiento Similar a la Insulina/genética
10.
Elife ; 102021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33724185

RESUMEN

COVID19 is a heterogeneous medical condition involving diverse underlying pathophysiological processes including hyperinflammation, endothelial damage, thrombotic microangiopathy, and end-organ damage. Limited knowledge about the molecular mechanisms driving these processes and lack of staging biomarkers hamper the ability to stratify patients for targeted therapeutics. We report here the results of a cross-sectional multi-omics analysis of hospitalized COVID19 patients revealing that seroconversion status associates with distinct underlying pathophysiological states. Low antibody titers associate with hyperactive T cells and NK cells, high levels of IFN alpha, gamma and lambda ligands, markers of systemic complement activation, and depletion of lymphocytes, neutrophils, and platelets. Upon seroconversion, all of these processes are attenuated, observing instead increases in B cell subsets, emergency hematopoiesis, increased D-dimer, and hypoalbuminemia. We propose that seroconversion status could potentially be used as a biosignature to stratify patients for therapeutic intervention and to inform analysis of clinical trial results in heterogenous patient populations.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , SARS-CoV-2 , Seroconversión , Biomarcadores , COVID-19/inmunología , COVID-19/metabolismo , Comorbilidad , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Hematopoyesis , Homeostasis , Hospitalización , Humanos , Hipoalbuminemia , Interferones/metabolismo , Modelos Biológicos , Estudios Seroepidemiológicos , Transducción de Señal
11.
medRxiv ; 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33758879

RESUMEN

COVID-19 pathology involves dysregulation of diverse molecular, cellular, and physiological processes. In order to expedite integrated and collaborative COVID-19 research, we completed multi-omics analysis of hospitalized COVID-19 patients including matched analysis of the whole blood transcriptome, plasma proteomics with two complementary platforms, cytokine profiling, plasma and red blood cell metabolomics, deep immune cell phenotyping by mass cytometry, and clinical data annotation. We refer to this multidimensional dataset as the COVIDome. We then created the COVIDome Explorer, an online researcher portal where the data can be analyzed and visualized in real time. We illustrate here the use of the COVIDome dataset through a multi-omics analysis of biosignatures associated with C-reactive protein (CRP), an established marker of poor prognosis in COVID-19, revealing associations between CRP levels and damage-associated molecular patterns, depletion of protective serpins, and mitochondrial metabolism dysregulation. We expect that the COVIDome Explorer will rapidly accelerate data sharing, hypothesis testing, and discoveries worldwide.

12.
medRxiv ; 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33330890

RESUMEN

COVID19 is a heterogeneous medical condition involving a suite of underlying pathophysiological processes including hyperinflammation, endothelial damage, thrombotic microangiopathy, and end-organ damage. Limited knowledge about the molecular mechanisms driving these processes and lack of staging biomarkers hamper the ability to stratify patients for targeted therapeutics. We report here the results of a cross-sectional multi-omics analysis of hospitalized COVID19 patients revealing that seroconversion status associates with distinct underlying pathophysiological states. Seronegative COVID19 patients harbor hyperactive T cells and NK cells, high levels of IFN alpha, gamma and lambda ligands, markers of systemic complement activation, neutropenia, lymphopenia and thrombocytopenia. In seropositive patients, all of these processes are attenuated, observing instead increases in B cell subsets, emergency hematopoiesis, increased markers of platelet activation, and hypoalbuminemia. We propose that seroconversion status could potentially be used as a biosignature to stratify patients for therapeutic intervention and to inform analysis of clinical trial results in heterogenous patient populations.

13.
Nat Commun ; 10(1): 4766, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31628327

RESUMEN

Trisomy 21 (T21) causes Down syndrome (DS), affecting immune and neurological function by ill-defined mechanisms. Here we report a large metabolomics study of plasma and cerebrospinal fluid, showing in independent cohorts that people with DS produce elevated levels of kynurenine and quinolinic acid, two tryptophan catabolites with potent immunosuppressive and neurotoxic properties, respectively. Immune cells of people with DS overexpress IDO1, the rate-limiting enzyme in the kynurenine pathway (KP) and a known interferon (IFN)-stimulated gene. Furthermore, the levels of IFN-inducible cytokines positively correlate with KP dysregulation. Using metabolic tracing assays, we show that overexpression of IFN receptors encoded on chromosome 21 contribute to enhanced IFN stimulation, thereby causing IDO1 overexpression and kynurenine overproduction in cells with T21. Finally, a mouse model of DS carrying triplication of IFN receptors exhibits KP dysregulation. Together, our results reveal a mechanism by which T21 could drive immunosuppression and neurotoxicity in DS.


Asunto(s)
Cromosomas Humanos Par 21/genética , Síndrome de Down/genética , Quinurenina/metabolismo , Receptores de Interferón/genética , Trisomía , Animales , Vías Biosintéticas/genética , Línea Celular , Citocinas/metabolismo , Síndrome de Down/metabolismo , Expresión Génica , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Metabolómica/métodos , Ratones Endogámicos C57BL , Ácido Quinolínico/metabolismo , Receptores de Interferón/metabolismo
14.
Cell Rep ; 29(7): 1893-1908.e4, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31722205

RESUMEN

People with Down syndrome (DS; trisomy 21) display a different disease spectrum relative to the general population, including lower rates of solid malignancies and higher incidence of neurological and autoimmune conditions. However, the mechanisms driving this unique clinical profile await elucidation. We completed a deep mapping of the immune system in adults with DS using mass cytometry to evaluate 100 immune cell types, which revealed global immune dysregulation consistent with chronic inflammation, including key changes in the myeloid and lymphoid cell compartments. Furthermore, measurement of interferon-inducible phosphorylation events revealed widespread hypersensitivity to interferon-α in DS, with cell-type-specific variations in downstream intracellular signaling. Mechanistically, this could be explained by overexpression of the interferon receptors encoded on chromosome 21, as demonstrated by increased IFNAR1 surface expression in all immune lineages tested. These results point to interferon-driven immune dysregulation as a likely contributor to the developmental and clinical hallmarks of DS.


Asunto(s)
Síndrome de Down/inmunología , Interferón-alfa/inmunología , Adulto , Síndrome de Down/patología , Femenino , Citometría de Flujo , Humanos , Masculino , Persona de Mediana Edad
15.
Sci Rep ; 7(1): 14818, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29093484

RESUMEN

Trisomy 21 (T21) causes Down syndrome (DS), but the mechanisms by which T21 produces the different disease spectrum observed in people with DS are unknown. We recently identified an activated interferon response associated with T21 in human cells of different origins, consistent with overexpression of the four interferon receptors encoded on chromosome 21, and proposed that DS could be understood partially as an interferonopathy. However, the impact of T21 on systemic signaling cascades in living individuals with DS is undefined. To address this knowledge gap, we employed proteomics approaches to analyze blood samples from 263 individuals, 165 of them with DS, leading to the identification of dozens of proteins that are consistently deregulated by T21. Most prominent among these proteins are numerous factors involved in immune control, the complement cascade, and growth factor signaling. Importantly, people with DS display higher levels of many pro-inflammatory cytokines (e.g. IL-6, MCP-1, IL-22, TNF-α) and pronounced complement consumption, resembling changes seen in type I interferonopathies and other autoinflammatory conditions. Therefore, these results are consistent with the hypothesis that increased interferon signaling caused by T21 leads to chronic immune dysregulation, and justify investigations to define the therapeutic value of immune-modulatory strategies in DS.


Asunto(s)
Síndrome de Down/sangre , Inflamación/sangre , Proteoma/análisis , Adolescente , Adulto , Niño , Preescolar , Enfermedad Crónica , Proteínas del Sistema Complemento/análisis , Citocinas/sangre , Síndrome de Down/complicaciones , Femenino , Humanos , Lactante , Inflamación/complicaciones , Masculino , Receptores de Factores de Crecimiento/sangre , Trisomía , Adulto Joven
16.
Elife ; 52016 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-27472900

RESUMEN

Although it is clear that trisomy 21 causes Down syndrome, the molecular events acting downstream of the trisomy remain ill defined. Using complementary genomics analyses, we identified the interferon pathway as the major signaling cascade consistently activated by trisomy 21 in human cells. Transcriptome analysis revealed that trisomy 21 activates the interferon transcriptional response in fibroblast and lymphoblastoid cell lines, as well as circulating monocytes and T cells. Trisomy 21 cells show increased induction of interferon-stimulated genes and decreased expression of ribosomal proteins and translation factors. An shRNA screen determined that the interferon-activated kinases JAK1 and TYK2 suppress proliferation of trisomy 21 fibroblasts, and this defect is rescued by pharmacological JAK inhibition. Therefore, we propose that interferon activation, likely via increased gene dosage of the four interferon receptors encoded on chromosome 21, contributes to many of the clinical impacts of trisomy 21, and that interferon antagonists could have therapeutic benefits.


Asunto(s)
Síndrome de Down/patología , Fibroblastos/fisiología , Inmunidad Innata , Interferones/metabolismo , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Monocitos/inmunología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA