Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioinformatics ; 35(21): 4496-4498, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31074494

RESUMEN

SUMMARY: The complexity of molecular networks makes them difficult to navigate and interpret, creating a need for specialized software. MINERVA is a web platform for visualization, exploration and management of molecular networks. Here, we introduce an extension to MINERVA architecture that greatly facilitates the access and use of the stored molecular network data. It allows to incorporate such data in analytical pipelines via a programmatic access interface, and to extend the platform's visual exploration and analytics functionality via plugin architecture. This is possible for any molecular network hosted by the MINERVA platform encoded in well-recognized systems biology formats. To showcase the possibilities of the plugin architecture, we have developed several plugins extending the MINERVA core functionalities. In the article, we demonstrate the plugins for interactive tree traversal of molecular networks, for enrichment analysis and for mapping and visualization of known disease variants or known adverse drug reactions to molecules in the network. AVAILABILITY AND IMPLEMENTATION: Plugins developed and maintained by the MINERVA team are available under the AGPL v3 license at https://git-r3lab.uni.lu/minerva/plugins/. The MINERVA API and plugin documentation is available at https://minerva-web.lcsb.uni.lu.


Asunto(s)
Programas Informáticos , Biología de Sistemas
2.
Protein Sci ; 32(2): e4565, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36648161

RESUMEN

Protein function is often interpreted using molecular interaction diagrams, encoding roles a given protein plays in various molecular mechanisms. Information about disease-related mechanisms can be inferred from disease maps, knowledge repositories containing manually constructed systems biology diagrams. Disease maps hosted on the Molecular Interaction Network VisuAlization (MINERVA) Platform are individually accessible through a REST API interface of each instance, making it challenging to systematically explore their contents. To address this challenge, we introduce the MINERVA Net web service, a repository of open-access disease maps allowing users to publicly share minimal information about their maps. The MINERVA Net repository provides REST API endpoints of particular disease maps, which then can be individually queried for content. In this article, we describe the concept of MINERVA Net and illustrate its use by comparing proteins and their interactions in three different disease maps.


Asunto(s)
Proteínas , Biología de Sistemas , Proteínas/genética , Programas Informáticos
3.
Front Bioinform ; 3: 1101505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502697

RESUMEN

Introduction: Investigation of molecular mechanisms of human disorders, especially rare diseases, require exploration of various knowledge repositories for building precise hypotheses and complex data interpretation. Recently, increasingly more resources offer diagrammatic representation of such mechanisms, including disease-dedicated schematics in pathway databases and disease maps. However, collection of knowledge across them is challenging, especially for research projects with limited manpower. Methods: In this article we present an automated workflow for construction of maps of molecular mechanisms for rare diseases. The workflow requires a standardized definition of a disease using Orphanet or HPO identifiers to collect relevant genes and variants, and to assemble a functional, visual repository of related mechanisms, including data overlays. The diagrams composing the final map are unified to a common systems biology format from CellDesigner SBML, GPML and SBML+layout+render. The constructed resource contains disease-relevant genes and variants as data overlays for immediate visual exploration, including embedded genetic variant browser and protein structure viewer. Results: We demonstrate the functionality of our workflow on two examples of rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are constructed based on their corresponding identifiers. Moreover, for the retinitis pigmentosa use-case, we include a list of differentially expressed genes to demonstrate how to tailor the workflow using omics datasets. Discussion: In summary, our work allows for an ad-hoc construction of molecular diagrams combined from different sources, preserving their layout and graphical style, but integrating them into a single resource. This allows to reduce time consuming tasks of prototyping of a molecular disease map, enabling visual exploration, hypothesis building, data visualization and further refinement. The code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/automap/.

4.
JAMIA Open ; 5(2): ooac038, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35651522

RESUMEN

Objective: Facilitate the multi-appointment scheduling problems (MASPs) characteristic of longitudinal clinical research studies. Additional goals include: reducing management time, optimizing clinical resources, and securing personally identifiable information. Materials and methods: Following a model view controller architecture, we developed a web-based tool written in Python 3. Results: Smart Scheduling (SMASCH) system facilitates clinical research and integrated care programs in Luxembourg, providing features to better manage MASPs and speed up management tasks. It is available both as a Linux package and Docker image (https://smasch.pages.uni.lu). Discussion: The long-term requirements of longitudinal clinical research studies justify the employment of flexible and well-maintained frameworks and libraries through an iterative software life-cycle suited to respond to rapidly changing scenarios. Conclusions: SMASCH is a free and open-source scheduling system for clinical studies able to satisfy recent data regulations providing features for better data accountability. Better scheduling systems can help optimize several metrics that ultimately affect the success of clinical studies.

5.
Isotopes Environ Health Stud ; 50(2): 143-55, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24438032

RESUMEN

As urban atmosphere is depleted of (13)CO2, its imprint should be detectable in the local vegetation and therefore in its CO2 respiratory emissions. This work was aimed at characterising strength and isotope signature of CO2 fluxes from soil in urban areas with varying distances from anthropogenic CO2 emissions. The soil CO2 flux and its δ(13)C isotope signature were measured using a chamber method on a monthly basis from July 2009 to May 2012 within the metropolitan area of Krakow, Southern Poland, at two locations representing different levels of anthropogenic influence: a lawn adjacent to a busy street (A) and an urban meadow (B). The small-scale spatial variability of the soil CO2 flux was also investigated at site B. Site B revealed significantly higher summer CO2 fluxes (by approximately 46 %) than site A, but no significant differences were found between their δ(13)CO2 signatures.


Asunto(s)
Dióxido de Carbono/análisis , Suelo/química , Isótopos de Carbono/análisis , Ciudades , Polonia , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA