Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(4): 724-36, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957681

RESUMEN

Histone proteins compact and stabilize the genomes of Eukarya and Archaea. By forming nucleosome(-like) structures they restrict access of DNA-binding transcription regulators to cis-regulatory DNA elements. Dynamic competition between histones and transcription factors is facilitated by different classes of proteins including ATP-dependent remodeling enzymes that control assembly, access, and editing of chromatin. Here, we summarize the knowledge on dynamics underlying transcriptional regulation across the domains of life with a focus on ATP-dependent enzymes in chromatin structure or in TATA-binding protein activity. These insights suggest directions for future studies on the evolution of transcription regulation and chromatin dynamics.


Asunto(s)
Ensamble y Desensamble de Cromatina , Eucariontes/clasificación , Eucariontes/genética , Transcripción Genética , Archaea/clasificación , Archaea/genética , Archaea/metabolismo , Eucariontes/metabolismo , Regulación de la Expresión Génica , Filogenia , ARN Polimerasa II/metabolismo , Factores de Transcripción/metabolismo
2.
Cell ; 157(3): 740-52, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24766815

RESUMEN

To understand regulatory systems, it would be useful to uniformly determine how different components contribute to the expression of all other genes. We therefore monitored mRNA expression genome-wide, for individual deletions of one-quarter of yeast genes, focusing on (putative) regulators. The resulting genetic perturbation signatures reflect many different properties. These include the architecture of protein complexes and pathways, identification of expression changes compatible with viability, and the varying responsiveness to genetic perturbation. The data are assembled into a genetic perturbation network that shows different connectivities for different classes of regulators. Four feed-forward loop (FFL) types are overrepresented, including incoherent type 2 FFLs that likely represent feedback. Systematic transcription factor classification shows a surprisingly high abundance of gene-specific repressors, suggesting that yeast chromatin is not as generally restrictive to transcription as is often assumed. The data set is useful for studying individual genes and for discovering properties of an entire regulatory system.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Técnicas Genéticas , Saccharomyces cerevisiae/genética , Transcriptoma , Eliminación de Gen , Técnicas de Inactivación de Genes
3.
Genes Dev ; 33(15-16): 888-902, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123066

RESUMEN

The basal transcription factor TFIID is central for RNA polymerase II-dependent transcription. Human TFIID is endowed with chromatin reader and DNA-binding domains and protein interaction surfaces. Fourteen TFIID TATA-binding protein (TBP)-associated factor (TAF) subunits assemble into the holocomplex, which shares subunits with the Spt-Ada-Gcn5-acetyltransferase (SAGA) coactivator. Here, we discuss the structural and functional evolution of TFIID and its divergence from SAGA. Our orthologous tree and domain analyses reveal dynamic gains and losses of epigenetic readers, plant-specific functions of TAF1 and TAF4, the HEAT2-like repeat in TAF2, and, importantly, the pre-LECA origin of TFIID and SAGA. TFIID evolution exemplifies the dynamic plasticity in transcription complexes in the eukaryotic lineage.


Asunto(s)
Epigénesis Genética , Eucariontes/clasificación , Eucariontes/genética , Evolución Molecular , Regulación de la Expresión Génica , Factor de Transcripción TFIID/genética , Biodiversidad , Filogenia
4.
Nucleic Acids Res ; 52(7): 4037-4052, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38499487

RESUMEN

Here, we identify RBM41 as a novel unique protein component of the minor spliceosome. RBM41 has no previously recognized cellular function but has been identified as a paralog of U11/U12-65K, a known unique component of the U11/U12 di-snRNP. Both proteins use their highly similar C-terminal RRMs to bind to 3'-terminal stem-loops in U12 and U6atac snRNAs with comparable affinity. Our BioID data indicate that the unique N-terminal domain of RBM41 is necessary for its association with complexes containing DHX8, an RNA helicase, which in the major spliceosome drives the release of mature mRNA from the spliceosome. Consistently, we show that RBM41 associates with excised U12-type intron lariats, is present in the U12 mono-snRNP, and is enriched in Cajal bodies, together suggesting that RBM41 functions in the post-splicing steps of the minor spliceosome assembly/disassembly cycle. This contrasts with U11/U12-65K, which uses its N-terminal region to interact with U11 snRNP during intron recognition. Finally, while RBM41 knockout cells are viable, they show alterations in U12-type 3' splice site usage. Together, our results highlight the role of the 3'-terminal stem-loop of U12 snRNA as a dynamic binding platform for the U11/U12-65K and RBM41 proteins, which function at distinct stages of the assembly/disassembly cycle.


Asunto(s)
ARN Helicasas DEAD-box , Factores de Empalme de ARN , ARN Nuclear Pequeño , Proteínas de Unión al ARN , Ribonucleoproteínas Nucleares Pequeñas , Empalmosomas , Empalmosomas/metabolismo , Empalmosomas/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/química , Humanos , ARN Nuclear Pequeño/metabolismo , ARN Nuclear Pequeño/genética , ARN Nuclear Pequeño/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Empalme del ARN , Intrones/genética , Células HeLa , Unión Proteica , Cuerpos Enrollados/metabolismo , Células HEK293
5.
EMBO J ; 40(14): e106536, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34009673

RESUMEN

Aneuploidy is the leading cause of miscarriage and congenital birth defects, and a hallmark of cancer. Despite this strong association with human disease, the genetic causes of aneuploidy remain largely unknown. Through exome sequencing of patients with constitutional mosaic aneuploidy, we identified biallelic truncating mutations in CENATAC (CCDC84). We show that CENATAC is a novel component of the minor (U12-dependent) spliceosome that promotes splicing of a specific, rare minor intron subtype. This subtype is characterized by AT-AN splice sites and relatively high basal levels of intron retention. CENATAC depletion or expression of disease mutants resulted in excessive retention of AT-AN minor introns in ˜ 100 genes enriched for nucleocytoplasmic transport and cell cycle regulators, and caused chromosome segregation errors. Our findings reveal selectivity in minor intron splicing and suggest a link between minor spliceosome defects and constitutional aneuploidy in humans.


Asunto(s)
Inestabilidad Cromosómica/genética , Cromosomas/genética , Mutación/genética , Empalmosomas/genética , Secuencia de Aminoácidos , Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Células HeLa , Humanos , Intrones/genética
6.
PLoS Biol ; 20(11): e3001855, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36395330

RESUMEN

The neuronal microtubule cytoskeleton is key to establish axon-dendrite polarity. Dendrites are characterized by the presence of minus-end out microtubules. However, the mechanisms that organize these microtubules with the correct orientation are still poorly understood. Using Caenorhabditis elegans as a model system for microtubule organization, we characterized the role of 2 microtubule minus-end related proteins in this process, the microtubule minus-end stabilizing protein calmodulin-regulated spectrin-associated protein (CAMSAP/PTRN-1), and the NINEIN homologue, NOCA-2 (noncentrosomal microtubule array). We found that CAMSAP and NINEIN function in parallel to mediate microtubule organization in dendrites. During dendrite outgrowth, RAB-11-positive vesicles localized to the dendrite tip to nucleate microtubules and function as a microtubule organizing center (MTOC). In the absence of either CAMSAP or NINEIN, we observed a low penetrance MTOC vesicles mislocalization to the cell body, and a nearly fully penetrant phenotype in double mutant animals. This suggests that both proteins are important for localizing the MTOC vesicles to the growing dendrite tip to organize microtubules minus-end out. Whereas NINEIN localizes to the MTOC vesicles where it is important for the recruitment of the microtubule nucleator γ-tubulin, CAMSAP localizes around the MTOC vesicles and is cotranslocated forward with the MTOC vesicles upon dendritic growth. Together, these results indicate that microtubule nucleation from the MTOC vesicles and microtubule stabilization are both important to localize the MTOC vesicles distally to organize dendritic microtubules minus-end out.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Microtúbulos , Centro Organizador de los Microtúbulos , Tubulina (Proteína) , Dendritas , Proteínas Asociadas a Microtúbulos , Proteínas de Caenorhabditis elegans/genética
7.
PLoS Comput Biol ; 20(2): e1011860, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38335232

RESUMEN

The complex eukaryotic cell resulted from a merger between simpler prokaryotic cells, yet the role of the mitochondrial endosymbiosis with respect to other eukaryotic innovations has remained under dispute. To investigate how the regulatory challenges associated with the endosymbiotic state impacted genome and network evolution during eukaryogenesis, we study a constructive computational model where two simple cells are forced into an obligate endosymbiosis. Across multiple in silico evolutionary replicates, we observe the emergence of different mechanisms for the coordination of host and symbiont cell cycles, stabilizing the endosymbiotic relationship. In most cases, coordination is implicit, without signaling between host and symbiont. Signaling only evolves when there is leakage of regulatory products between host and symbiont. In the fittest evolutionary replicate, the host has taken full control of the symbiont cell cycle through signaling, mimicking the regulatory dominance of the nucleus over the mitochondrion that evolved during eukaryogenesis.


Asunto(s)
Evolución Biológica , Simbiosis , Simbiosis/genética , Células Eucariotas/metabolismo , Células Procariotas/metabolismo , Eucariontes/genética , Filogenia
8.
Cell ; 143(6): 991-1004, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21145464

RESUMEN

To understand relationships between phosphorylation-based signaling pathways, we analyzed 150 deletion mutants of protein kinases and phosphatases in S. cerevisiae using DNA microarrays. Downstream changes in gene expression were treated as a phenotypic readout. Double mutants with synthetic genetic interactions were included to investigate genetic buffering relationships such as redundancy. Three types of genetic buffering relationships are identified: mixed epistasis, complete redundancy, and quantitative redundancy. In mixed epistasis, the most common buffering relationship, different gene sets respond in different epistatic ways. Mixed epistasis arises from pairs of regulators that have only partial overlap in function and that are coupled by additional regulatory links such as repression of one by the other. Such regulatory modules confer the ability to control different combinations of processes depending on condition or context. These properties likely contribute to the evolutionary maintenance of paralogs and indicate a way in which signaling pathways connect for multiprocess control.


Asunto(s)
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Epistasis Genética , Perfilación de la Expresión Génica , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Fosfotransferasas/genética , Fosfotransferasas/metabolismo
9.
Mol Biol Evol ; 40(1)2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36631250

RESUMEN

Eukaryotic genes are characterized by the presence of introns that are removed from pre-mRNA by a spliceosome. This ribonucleoprotein complex is comprised of multiple RNA molecules and over a hundred proteins, which makes it one of the most complex molecular machines that originated during the prokaryote-to-eukaryote transition. Previous works have established that these introns and the spliceosomal core originated from self-splicing introns in prokaryotes. Yet, how the spliceosomal core expanded by recruiting many additional proteins remains largely elusive. In this study, we use phylogenetic analyses to infer the evolutionary history of 145 proteins that we could trace back to the spliceosome in the last eukaryotic common ancestor. We found that an overabundance of proteins derived from ribosome-related processes was added to the prokaryote-derived core. Extensive duplications of these proteins substantially increased the complexity of the emerging spliceosome. By comparing the intron positions between spliceosomal paralogs, we infer that most spliceosomal complexity postdates the spread of introns through the proto-eukaryotic genome. The reconstruction of early spliceosomal evolution provides insight into the driving forces behind the emergence of complexes with many proteins during eukaryogenesis.


Asunto(s)
Empalme del ARN , Empalmosomas , Empalmosomas/genética , Intrones , Filogenia , Eucariontes/genética , Evolución Molecular
10.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32935832

RESUMEN

Insights into the evolution of ancestral complexes and pathways are generally achieved through careful and time-intensive manual analysis often using phylogenetic profiles of the constituent proteins. This manual analysis limits the possibility of including more protein-complex components, repeating the analyses for updated genome sets or expanding the analyses to larger scales. Automated orthology inference should allow such large-scale analyses, but substantial differences between orthologous groups generated by different approaches are observed. We evaluate orthology methods for their ability to recapitulate a number of observations that have been made with regard to genome evolution in eukaryotes. Specifically, we investigate phylogenetic profile similarity (co-occurrence of complexes), the last eukaryotic common ancestor's gene content, pervasiveness of gene loss and the overlap with manually determined orthologous groups. Moreover, we compare the inferred orthologies to each other. We find that most orthology methods reconstruct a large last eukaryotic common ancestor, with substantial gene loss, and can predict interacting proteins reasonably well when applying phylogenetic co-occurrence. At the same time, derived orthologous groups show imperfect overlap with manually curated orthologous groups. There is no strong indication of which orthology method performs better than another on individual or all of these aspects. Counterintuitively, despite the orthology methods behaving similarly regarding large-scale evaluation, the obtained orthologous groups differ vastly from one another. Availability and implementation The data and code underlying this article are available in github and/or upon reasonable request to the corresponding author: https://github.com/ESDeutekom/ComparingOrthologies.


Asunto(s)
Benchmarking/métodos , Eucariontes/genética , Filogenia , Proteínas/genética , Proteoma/genética , Bases de Datos de Proteínas , Eucariontes/clasificación , Evolución Molecular , Genoma/genética , Genómica/métodos , Internet , Proteínas/metabolismo , Proteoma/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos
11.
Proc Natl Acad Sci U S A ; 116(26): 12873-12882, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31127038

RESUMEN

The emergence of eukaryotes from ancient prokaryotic lineages embodied a remarkable increase in cellular complexity. While prokaryotes operate simple systems to connect DNA to the segregation machinery during cell division, eukaryotes use a highly complex protein assembly known as the kinetochore. Although conceptually similar, prokaryotic segregation systems and the eukaryotic kinetochore are not homologous. Here we investigate the origins of the kinetochore before the last eukaryotic common ancestor (LECA) using phylogenetic trees, sensitive profile-versus-profile homology detection, and structural comparisons of its protein components. We show that LECA's kinetochore proteins share deep evolutionary histories with proteins involved in a few prokaryotic systems and a multitude of eukaryotic processes, including ubiquitination, transcription, and flagellar and vesicular transport systems. We find that gene duplications played a major role in shaping the kinetochore; more than half of LECA's kinetochore proteins have other kinetochore proteins as closest homologs. Some of these have no detectable homology to any other eukaryotic protein, suggesting that they arose as kinetochore-specific folds before LECA. We propose that the primordial kinetochore evolved from proteins involved in various (pre)eukaryotic systems as well as evolutionarily novel folds, after which a subset duplicated to give rise to the complex kinetochore of LECA.


Asunto(s)
Evolución Molecular , Cinetocoros/química , Filogenia , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Eucariontes/clasificación , Eucariontes/genética , Duplicación de Gen , Cinetocoros/clasificación , Proteínas de Microtúbulos/química , Proteínas de Microtúbulos/genética , Homología de Secuencia de Aminoácido
12.
RNA ; 25(3): 292-304, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30567971

RESUMEN

Eukaryotic mRNAs contain a 5' leader sequence preceding the main open reading frame (mORF) and, depending on the species, 20%-50% of eukaryotic mRNAs harbor an upstream ORF (uORF) in the 5' leader. An unknown fraction of these uORFs encode sequence conserved peptides (conserved peptide uORFs, CPuORFs). Experimentally validated CPuORFs demonstrated to regulate the translation of downstream mORFs often do so in a metabolite concentration-dependent manner. Previous research has shown that most CPuORFs possess a start codon context suboptimal for translation initiation, which turns out to be favorable for translational regulation. The suboptimal initiation context may even include non-AUG start codons, which makes CPuORFs hard to predict. For this reason, we developed a novel pipeline to identify CPuORFs unbiased of start codon using well-annotated sequence data from 31 eudicot plant species and rice. Our new pipeline was able to identify 29 novel Arabidopsis thaliana (Arabidopsis) CPuORFs, conserved across a wide variety of eudicot species of which 15 do not initiate with an AUG start codon. In addition to CPuORFs, the pipeline was able to find 14 conserved coding regions directly upstream and in frame with the mORF, which likely initiate translation on a non-AUG start codon. Altogether, our pipeline identified highly conserved coding regions in the 5' leaders of Arabidopsis transcripts, including in genes with proven functional importance such as LHY, a key regulator of the circadian clock, and the RAPTOR1 subunit of the target of rapamycin (TOR) kinase.


Asunto(s)
Regiones no Traducidas 5' , Secuencia de Aminoácidos , Arabidopsis/genética , Codón Iniciador , Secuencia Conservada , Sistemas de Lectura Abierta , ARN Mensajero , Regulación de la Expresión Génica de las Plantas , Filogenia , Biosíntesis de Proteínas
13.
Bioessays ; 41(5): e1900006, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31026339

RESUMEN

Comparative genomics has proven a fruitful approach to acquire many functional and evolutionary insights into core cellular processes. Here it is argued that in order to perform accurate and interesting comparative genomics, one first and foremost has to be able to recognize, postulate, and revise different evolutionary scenarios. After all, these studies lack a simple protocol, due to different proteins having different evolutionary dynamics and demanding different approaches. The authors here discuss this challenge from a practical (what are the observations?) and conceptual (how do these indicate a specific evolutionary scenario?) viewpoint, with the aim to guide investigators who want to analyze the evolution of their protein(s) of interest. By sharing how the authors draft, test, and update such a scenario and how it directs their investigations, the authors hope to illuminate how to execute molecular evolution studies and how to interpret them. Also see the video abstract here https://youtu.be/VCt3l2pbdbQ.


Asunto(s)
Biología Computacional/métodos , Evolución Molecular , Proteínas/genética , Proteínas de Caenorhabditis elegans/genética , Bases de Datos de Proteínas , Células Eucariotas , Genómica/métodos , Humanos , Filogenia , Dominios Proteicos , Proteínas/química
14.
BMC Evol Biol ; 20(1): 98, 2020 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-32770961

RESUMEN

BACKGROUND: Convergent and parallel evolution provide unique insights into the mechanisms of natural selection. Some of the most striking convergent and parallel (collectively recurrent) amino acid substitutions in proteins are adaptive, but there are also many that are selectively neutral. Accordingly, genome-wide assessment has shown that recurrent sequence evolution in orthologs is chiefly explained by nearly neutral evolution. For paralogs, more frequent functional change is expected because additional copies are generally not retained if they do not acquire their own niche. Yet, it is unknown to what extent recurrent sequence differentiation is discernible after independent gene duplications in different eukaryotic taxa. RESULTS: We develop a framework that detects patterns of recurrent sequence evolution in duplicated genes. This is used to analyze the genomes of 90 diverse eukaryotes. We find a remarkable number of families with a potentially predictable functional differentiation following gene duplication. In some protein families, more than ten independent duplications show a similar sequence-level differentiation between paralogs. Based on further analysis, the sequence divergence is found to be generally asymmetric. Moreover, about 6% of the recurrent sequence evolution between paralog pairs can be attributed to recurrent differentiation of subcellular localization. Finally, we reveal the specific recurrent patterns for the gene families Hint1/Hint2, Sco1/Sco2 and vma11/vma3. CONCLUSIONS: The presented methodology provides a means to study the biochemical underpinning of functional differentiation between paralogs. For instance, two abundantly repeated substitutions are identified between independently derived Sco1 and Sco2 paralogs. Such identified substitutions allow direct experimental testing of the biological role of these residues for the repeated functional differentiation. We also uncover a diverse set of families with recurrent sequence evolution and reveal trends in the functional and evolutionary trajectories of this hitherto understudied phenomenon.


Asunto(s)
Eucariontes/genética , Evolución Molecular , Duplicación de Gen , Sustitución de Aminoácidos , Genes Duplicados , Modelos Genéticos , Familia de Multigenes , Selección Genética
15.
Chromosoma ; 128(3): 331-354, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31037469

RESUMEN

The monopolin complex is a multifunctional molecular crosslinker, which in S. pombe binds and organises mitotic kinetochores to prevent aberrant kinetochore-microtubule interactions. In the budding yeast S. cerevisiae, whose kinetochores bind a single microtubule, the monopolin complex crosslinks and mono-orients sister kinetochores in meiosis I, enabling the biorientation and segregation of homologs. Here, we show that both the monopolin complex subunit Csm1 and its binding site on the kinetochore protein Dsn1 are broadly distributed throughout eukaryotes, suggesting a conserved role in kinetochore organisation and function. We find that budding yeast Csm1 binds two conserved motifs in Dsn1, one (termed Box 1) representing the ancestral, widely conserved monopolin binding motif and a second (termed Box 2-3) with a likely role in enforcing specificity of sister kinetochore crosslinking. We find that Box 1 and Box 2-3 bind the same conserved hydrophobic cavity on Csm1, suggesting competition or handoff between these motifs. Using structure-based mutants, we also find that both Box 1 and Box 2-3 are critical for monopolin function in meiosis. We identify two conserved serine residues in Box 2-3 that are phosphorylated in meiosis and whose mutation to aspartate stabilises Csm1-Dsn1 binding, suggesting that regulated phosphorylation of these residues may play a role in sister kinetochore crosslinking specificity. Overall, our results reveal the monopolin complex as a broadly conserved kinetochore organiser in eukaryotes, which budding yeast have co-opted to mediate sister kinetochore crosslinking through the addition of a second, regulatable monopolin binding interface.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Eucariontes/genética , Eucariontes/metabolismo , Evolución Molecular , Microtúbulos/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Conformación Proteica , Dominios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
PLoS Comput Biol ; 15(8): e1007301, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31461468

RESUMEN

In recent years it became clear that in eukaryotic genome evolution gene loss is prevalent over gene gain. However, the absence of genes in an annotated genome is not always equivalent to the loss of genes. Due to sequencing issues, or incorrect gene prediction, genes can be falsely inferred as absent. This implies that loss estimates are overestimated and, more generally, that falsely inferred absences impact genomic comparative studies. However, reliable estimates of how prevalent this issue is are lacking. Here we quantified the impact of gene prediction on gene loss estimates in eukaryotes by analysing 209 phylogenetically diverse eukaryotic organisms and comparing their predicted proteomes to that of their respective six-frame translated genomes. We observe that 4.61% of domains per species were falsely inferred to be absent for Pfam domains predicted to have been present in the last eukaryotic common ancestor. Between phylogenetically different categories this estimate varies substantially: for clade-specific loss (ancestral loss) we found 1.30% and for species-specific loss 16.88% to be falsely inferred as absent. For BUSCO 1-to-1 orthologous families, 18.30% were falsely inferred to be absent. Finally, we showed that falsely inferred absences indeed impact loss estimates, with the number of losses decreasing by 11.78%. Our work strengthens the increasing number of studies showing that gene loss is an important factor in eukaryotic genome evolution. However, while we demonstrate that on average inferring gene absences from predicted proteomes is reliable, caution is warranted when inferring species-specific absences.


Asunto(s)
Eucariontes/genética , Evolución Molecular , Animales , Biología Computacional , Eliminación de Gen , Duplicación de Gen , Genoma , Humanos , Filogenia , Dominios Proteicos/genética , Proteoma , Especificidad de la Especie
17.
Plant Cell ; 28(12): 2937-2951, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27920338

RESUMEN

Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development.


Asunto(s)
Arabidopsis/citología , Arabidopsis/genética , Diferenciación Celular/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Raíces de Plantas/citología , Raíces de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
EMBO Rep ; 18(9): 1559-1571, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28642229

RESUMEN

During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule-mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current-day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co-evolved with one another, albeit in different manners. These co-evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.


Asunto(s)
Proteínas de Ciclo Celular/genética , Eucariontes/fisiología , Evolución Molecular , Genómica/métodos , Cinetocoros/fisiología , Proteínas de Ciclo Celular/metabolismo , División Celular , Segregación Cromosómica , Eucariontes/genética , Duplicación de Gen , Cinetocoros/química , Microtúbulos
19.
New Phytol ; 214(1): 233-244, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27935038

RESUMEN

This work investigates the extent of translational regulation during seed germination. The polysome occupancy of each gene is determined by genome-wide profiling of total mRNA and polysome-associated mRNA. This reveals extensive translational regulation during Arabidopsis thaliana seed germination. The polysome occupancy of thousands of individual mRNAs changes to a large extent during the germination process. Intriguingly, these changes are restricted to two temporal phases (shifts) during germination, seed hydration and germination. Sequence features, such as upstream open reading frame number, transcript length, mRNA stability, secondary structures, and the presence and location of specific motifs correlated with this translational regulation. These features differed significantly between the two shifts, indicating that independent mechanisms regulate translation during seed germination. This study reveals substantial translational dynamics during seed germination and identifies development-dependent sequence features and cis elements that correlate with the translation control, uncovering a novel and important layer of gene regulation during seed germination.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Germinación/genética , Polirribosomas/metabolismo , Biosíntesis de Proteínas/genética , Semillas/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/química , ARN de Planta/genética , ARN de Planta/metabolismo
20.
Plant J ; 81(2): 210-22, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25376907

RESUMEN

Arabidopsis downy mildew resistant 6 (dmr6) mutants have lost their susceptibility to the downy mildew Hyaloperonospora arabidopsidis. Here we show that dmr6 is also resistant to the bacterium Pseudomonas syringae and the oomycete Phytophthora capsici. Resistance is accompanied by enhanced defense gene expression and elevated salicylic acid levels. The suppressive effect of the DMR6 oxygenase was confirmed in transgenic Arabidopsis lines overexpressing DMR6 that show enhanced susceptibility to H. arabidopsidis, P. capsici, and P. syringae. Phylogenetic analysis of the superfamily of 2-oxoglutarate Fe(II)-dependent oxygenases revealed a subgroup of DMR6-LIKE OXYGENASEs (DLOs). Within Arabidopsis, DMR6 is most closely related to DLO1 and DLO2. Overexpression of DLO1 and DLO2 in the dmr6 mutant restored the susceptibility to downy mildew indicating that DLOs negatively affect defense, similar to DMR6. DLO1, but not DLO2, is co-expressed with DMR6, showing strong activation during pathogen attack and following salicylic acid treatment. DMR6 and DLO1 differ in their spatial expression pattern in downy mildew-infected Arabidopsis leaves; DMR6 is mostly expressed in cells that are in contact with hyphae and haustoria of H. arabidopsidis, while DLO1 is expressed mainly in the vascular tissues near infection sites. Strikingly, the dmr6-3_dlo1 double mutant, that is completely resistant to H. arabidopsidis, showed a strong growth reduction that was associated with high levels of salicylic acid. We conclude that DMR6 and DLO1 redundantly suppress plant immunity, but also have distinct activities based on their differential localization of expression.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Enfermedades de las Plantas/microbiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oomicetos/patogenicidad , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Pseudomonas syringae/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA