Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Conserv Genet ; 23(6): 995-1010, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36397975

RESUMEN

Globally distributed marine taxa are well suited for investigations of biogeographic impacts on genetic diversity, connectivity, and population demography. The sea turtle genus Lepidochelys includes the wide-ranging and abundant olive ridley (L. olivacea), and the geographically restricted and 'Critically Endangered' Kemp's ridley (L. kempii). To investigate their historical biogeography, we analyzed a large dataset of mitochondrial DNA (mtDNA) sequences from olive (n = 943) and Kemp's (n = 287) ridleys, and genotyped 15 nuclear microsatellite loci in a global sample of olive ridleys (n = 285). We found that the ridley species split ~ 7.5 million years ago, before the Panama Isthmus closure. The most ancient mitochondrial olive ridley lineage, located in the Indian Ocean, was dated to ~ 2.2 Mya. Both mitochondrial and nuclear markers revealed significant structure for olive ridleys between Atlantic (ATL), East Pacific (EP), and Indo-West Pacific (IWP) areas. However, the divergence of mtDNA clades was very recent (< 1 Mya) with low within- clade diversity, supporting a recurrent extinction-recolonization model for these ocean regions. All data showed that ATL and IWP groups were more closely related than those in the EP, with mtDNA data supporting recent recolonization of the ATL from the IWP. Individual olive ridley dispersal between the ATL, EP, and IN/IWP could be interpreted as more male- than female-biased, and genetic diversity was lowest in the Atlantic Ocean. All populations showed signs of recent expansion, and estimated time frames were concordant with their recent colonization history. Investigating species abundance and distribution changes over time is central to evolutionary biology, and this study provides a historical biogeographic context for marine vertebrate conservation and management. Supplementary Information: The online version contains supplementary material available at 10.1007/s10592-022-01465-3.

2.
Mol Ecol ; 30(23): 6178-6192, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34390061

RESUMEN

Reconstructing past events of hybridization and population size changes are required to understand speciation mechanisms and current patterns of genetic diversity, and ultimately contribute to species' conservation. Sea turtles are ancient species currently facing anthropogenic threats including climate change, fisheries, and illegal hunting. Five of the seven extant sea turtle species are known to currently hybridize, especially along the Brazilian coast where some populations can have ~32%-42% of hybrids. Although frequently observed today, it is not clear what role hybridization plays in the evolutionary diversification of this group of reptiles. In this study, we generated whole genome resequencing data of the five globally distributed sea turtle species to estimate a calibrated phylogeny and the population size dynamics, and to understand the role of hybridization in shaping the genomes of these ancient species. Our results reveal discordant species divergence dates between mitochondrial and nuclear genomes, with a high frequency of conflicting trees throughout the nuclear genome suggesting that some sea turtle species frequently hybridized in the past. The reconstruction of the species' demography showed a general decline in effective population sizes with no signs of recovery, except for the leatherback sea turtle. Furthermore, we discuss the influence of reference bias in our estimates. We show long-lasting ancestral gene flow events within Chelonioidea that continued for millions of years after initial divergence. Speciation with gene flow is a common pattern in marine species, and it raises questions whether current hybridization events should be considered as a part of these species' evolutionary history or a conservation issue.


Asunto(s)
Tortugas , Animales , Flujo Génico , Genoma , Caza , Hibridación Genética , Tortugas/genética
3.
J Therm Biol ; 44: 70-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25086976

RESUMEN

Climate change poses a unique threat to species with temperature dependent sex determination (TSD), such as marine turtles, where increases in temperature can result in extreme sex ratio biases. Knowledge of the primary sex ratio of populations with TSD is key for providing a baseline to inform management strategies and to accurately predict how future climate changes may affect turtle populations. However, there is a lack of robust data on offspring sex ratio at appropriate temporal and spatial scales to inform management decisions. To address this, we estimate the primary sex ratio of hawksbill hatchlings, Eretmochelys imbricata, from incubation duration of 5514 in situ nests from 10 nesting beaches from two regions in Brazil over the last 27 years. A strong female bias was estimated in all beaches, with 96% and 89% average female sex ratios produced in Bahia (BA) and Rio Grande do Norte (RN). Both inter-annual (BA, 88 to 99%; RN, 75 to 96% female) and inter-beach (BA, 92% to 97%; RN, 81% to 92% female) variability in mean offspring sex ratio was observed. These findings will guide management decisions in Brazil and provide further evidence of highly female-skew sex ratios in hawksbill turtles.


Asunto(s)
Aclimatación , Razón de Masculinidad , Tortugas/fisiología , Animales , Ecosistema , Femenino , Masculino , Comportamiento de Nidificación , Tortugas/embriología
4.
Mol Ecol ; 21(17): 4300-12, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22780882

RESUMEN

Surprisingly, a high frequency of interspecific sea turtle hybrids has been previously recorded in a nesting site along a short stretch of the Brazilian coast. Mitochondrial DNA data indicated that as much as 43% of the females identified as Eretmochelys imbricata are hybrids in this area (Bahia State of Brazil). It is a remarkable find, because most of the nesting sites surveyed worldwide, including some in northern Brazil, presents no hybrids, and rare Caribbean sites present no more than 2% of hybrids. Thus, a detailed understanding of the hybridization process is needed to evaluate natural or anthropogenic causes of this regional phenomenon in Brazil, which could be an important factor affecting the conservation of this population. We analysed a set of 12 nuclear markers to investigate the pattern of hybridization involving three species of sea turtles: hawksbill (E. imbricata), loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea). Our data indicate that most of the individuals in the crossings L. olivacea × E. imbricata and L. olivacea × C. caretta are F1 hybrids, whereas C. caretta × E. imbricata crossings present F1 and backcrosses with both parental species. In addition, the C. caretta × E. imbricata hybridization seems to be gender and species biased, and we also found one individual with evidence of multispecies hybridization among C. caretta × E. imbricata × Chelonia mydas. The overall results also indicate that hybridization in this area is a recent phenomenon, spanning at least two generations or ~40 years.


Asunto(s)
Núcleo Celular/genética , Hibridación Genética , Tortugas/genética , Animales , Teorema de Bayes , Evolución Biológica , Brasil , Análisis por Conglomerados , ADN Mitocondrial/genética , Femenino , Genotipo , Haplotipos , Masculino , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN
5.
J Hered ; 99(2): 215-20, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18252731

RESUMEN

The leatherback sea turtle (Dermochelys coriacea) population that nests in Brazil is restricted to a few individuals, but high densities of pelagic individuals are observed along the southern and southeastern Brazilian coast. We investigated the diversity of the mitochondrial DNA (mtDNA) control region in order to understand the relationship between nesting and pelagic leatherbacks from Brazil and elsewhere. High-quality 711-bp sequences were generated, analyzed, and compared with published data from worldwide populations. We detected the presence of shared haplotypes between nesting and pelagic aggregates from Brazil, as well as haplotypes shared with other nesting areas from the Atlantic and Pacific. Furthermore, the use of longer control region sequences allowed the subdivision of the common Atlantic haplotype A into 3 different haplotypes (A1, A3, and A4), thus improving the resolution of mtDNA-based leatherback phylogeography. The use of longer sequences partially supported a closer association between nesting and pelagic individuals from Brazil and pointed to a complex origin for the pelagic individuals in the Brazilian coast.


Asunto(s)
Evolución Biológica , Tortugas/genética , Animales , Secuencia de Bases , Brasil , Cartilla de ADN , ADN Mitocondrial/genética , Femenino , Haplotipos , Tortugas/clasificación
6.
PeerJ ; 2: e255, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24688839

RESUMEN

Hybridization between hawksbill (Eretmochelys imbricata) and loggerhead (Caretta caretta) breeding groups is unusually common in Bahia state, Brazil. Such hybridization is possible because hawksbill and loggerhead nesting activities overlap temporally and spatially along the coast of this state. Nevertheless, the destinations of their offspring are not yet known. This study is the first to identify immature hawksbill × loggerhead hybrids (n = 4) from this rookery by analyzing the mitochondrial DNA (mtDNA) of 157 immature turtles morphologically identified as hawksbills. We also compare for the first time modeled dispersal patterns of hawksbill, loggerhead, and hybrid offspring considering hatching season and oceanic phase duration of turtles. Particle movements varied according to season, with a higher proportion of particles dispersing southwards throughout loggerhead and hybrid hatching seasons, and northwards during hawksbill season. Hybrids from Bahia were not present in important hawksbill feeding grounds of Brazil, being detected only at areas more common for loggerheads. The genetic and oceanographic findings of this work indicate that these immature hybrids, which are morphologically similar to hawksbills, could be adopting behavioral traits typical of loggerheads, such as feeding in temperate waters of the western South Atlantic. Understanding the distribution, ecology, and migrations of these hybrids is essential for the development of adequate conservation and management plans.

7.
PLoS One ; 9(1): e85956, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465810

RESUMEN

Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology.


Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Tortugas/genética , Animales , Océano Atlántico , Conservación de los Recursos Naturales , Femenino , Genética de Población , Haplotipos , Océano Índico , Mar Mediterráneo , Mitocondrias/genética , Datos de Secuencia Molecular , Filogenia , Filogeografía , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA