Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Allergy ; 79(1): 184-199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37815010

RESUMEN

BACKGROUND: Virus-like particle (VLP) Peanut is a novel immunotherapeutic vaccine candidate for the treatment of peanut allergy. The active pharmaceutical ingredient represents cucumber mosaic VLPs (CuMVTT -VLPs) that are genetically fused with one of the major peanut allergens, Ara h 2 (CuMVTT -Ara h 2). We previously demonstrated the immunogenicity and the protective capacity of VLP Peanut-based immunization in a murine model for peanut allergy. Moreover, a Phase I clinical trial has been initiated using VLP Peanut material manufactured following a GMP-compliant manufacturing process. Key product characterization studies were undertaken here to understand the role and contribution of critical quality attributes that translate as predictive markers of immunogenicity and protective efficacy for clinical vaccine development. METHOD: The role of prokaryotic RNA encapsulated within VLP Peanut on vaccine immunogenicity was assessed by producing a VLP Peanut batch with a reduced RNA content (VLP Peanut low RNA). Immunogenicity and peanut allergen challenge studies were conducted with VLP Peanut low RNA, as well as with VLP Peanut in WT and TLR 7 KO mice. Furthermore, mass spectrometry and SDS-PAGE based methods were used to determine Ara h 2 antigen density on the surface of VLP Peanut particles. This methodology was subsequently applied to investigate the relationship between Ara h 2 antigen density and immunogenicity of VLP Peanut. RESULTS: A TLR 7 dependent formation of Ara h 2 specific high-avidity IgG antibodies, as well as a TLR 7 dependent change in the dominant IgG subclass, was observed following VLP Peanut vaccination, while total allergen-specific IgG remained relatively unaffected. Consistently, a missing TLR 7 signal caused only a weak decrease in allergen tolerability after vaccination. In contrast, a reduced RNA content for VLP Peanut resulted in diminished total Ara h 2 specific IgG responses, followed by a significant impairment in peanut allergen tolerability. The discrepant effect on allergen tolerance caused by an absent TLR 7 signal versus a reduced RNA content is explained by the observation that VLP Peanut-derived RNA not only stimulates TLR 7 but also TLR 3. Additionally, a strong correlation was observed between the number of Ara h 2 antigens displayed on the surface of VLP Peanut particles and the vaccine's immunogenicity and protective capacity. CONCLUSIONS: Our findings demonstrate that prokaryotic RNA encapsulated within VLP Peanut, including antigen density of Ara h 2 on viral particles, are key contributors to the immunogenicity and protective capacity of the vaccine. Thus, antigenicity and RNA content are two critical quality attributes that need to be determined at the stage of manufacturing, providing robust information regarding the immunogenicity and protective capacity of VLP Peanut in the mouse which has translational relevance to the human setting.


Asunto(s)
Hipersensibilidad al Cacahuete , Vacunas de Partículas Similares a Virus , Humanos , Animales , Ratones , Hipersensibilidad al Cacahuete/prevención & control , Receptor Toll-Like 7 , Alérgenos , Arachis , Inmunoglobulina G , ARN , Antígenos de Plantas
2.
Allergy ; 78(7): 1980-1996, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36883475

RESUMEN

BACKGROUND: Allergy to peanut is one of the leading causes of anaphylactic reactions among food allergic patients. Immunization against peanut allergy with a safe and protective vaccine holds a promise to induce durable protection against anaphylaxis caused by exposure to peanut. A novel vaccine candidate (VLP Peanut), based on virus-like particles (VLPs), is described here for the treatment of peanut allergy. METHODS AND RESULTS: VLP Peanut consists of two proteins: a capsid subunit derived from Cucumber mosaic virus engineered with a universal T-cell epitope (CuMVTT ) and a CuMVTT subunit fused with peanut allergen Ara h 2 (CuMVTT -Ara h 2), forming mosaic VLPs. Immunizations with VLP Peanut in both naïve and peanut-sensitized mice resulted in a significant anti-Ara h 2 IgG response. Local and systemic protection induced by VLP Peanut were established in mouse models for peanut allergy following prophylactic, therapeutic, and passive immunizations. Inhibition of FcγRIIb function resulted in a loss of protection, confirming the crucial role of the receptor in conferring cross protection against peanut allergens other than Ara h 2. CONCLUSION: VLP Peanut can be delivered to peanut-sensitized mice without triggering allergic reactions, while remaining highly immunogenic and offering protection against all peanut allergens. In addition, vaccination ablates allergic symptoms upon allergen challenge. Moreover, the prophylactic immunization setting conferred the protection against subsequent peanut-induced anaphylaxis, showing the potential for preventive vaccination. This highlights the effectiveness of VLP Peanut as a prospective break-through immunotherapy vaccine candidate toward peanut allergy. VLP Peanut has now entered clinical development with the study PROTECT.


Asunto(s)
Anafilaxia , Hipersensibilidad al Cacahuete , Ratones , Animales , Hipersensibilidad al Cacahuete/prevención & control , Estudios Prospectivos , Antígenos de Plantas , Alérgenos , Arachis
3.
Allergy ; 77(1): 243-257, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34496033

RESUMEN

BACKGROUND: SARS-CoV-2 caused one of the most devastating pandemics in the recent history of mankind. Due to various countermeasures, including lock-downs, wearing masks, and increased hygiene, the virus has been controlled in some parts of the world. More recently, the availability of vaccines, based on RNA or adenoviruses, has greatly added to our ability to keep the virus at bay; again, however, in some parts of the world only. While available vaccines are effective, it would be desirable to also have more classical vaccines at hand for the future. Key feature of vaccines for long-term control of SARS-CoV-2 would be inexpensive production at large scale, ability to make multiple booster injections, and long-term stability at 4℃. METHODS: Here, we describe such a vaccine candidate, consisting of the SARS-CoV-2 receptor-binding motif (RBM) grafted genetically onto the surface of the immunologically optimized cucumber mosaic virus, called CuMVTT -RBM. RESULTS: Using bacterial fermentation and continuous flow centrifugation for purification, the yield of the production process is estimated to be >2.5 million doses per 1000-litre fermenter run. We demonstrate that the candidate vaccine is highly immunogenic in mice and rabbits and induces more high avidity antibodies compared to convalescent human sera. The induced antibodies are more cross-reactive to mutant RBDs of variants of concern (VoC). Furthermore, antibody responses are neutralizing and long-lived. In addition, the vaccine candidate was stable for at least 14 months at 4℃. CONCLUSION: Thus, the here presented VLP-based vaccine may be a good candidate for use as conventional vaccine in the long term.


Asunto(s)
COVID-19 , Vacunas de Partículas Similares a Virus , Animales , Anticuerpos Neutralizantes , Formación de Anticuerpos , Vacunas contra la COVID-19 , Control de Enfermedades Transmisibles , Humanos , Ratones , Conejos , SARS-CoV-2
5.
Vaccines (Basel) ; 12(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932390

RESUMEN

T help (Th), stimulation of toll-like receptors (pathogen-associated molecular patterns, PAMPs), and antigen organization and repetitiveness (pathogen-associated structural patterns, PASPs) were shown numerous times to be important in driving B-cell and antibody responses. In this study, we dissected the individual contributions of these parameters using newly developed "Immune-tag" technology. As model antigens, we used eGFP and the third domain of the dengue virus 1 envelope protein (DV1 EDIII), the major target of virus-neutralizing antibodies. The respective proteins were expressed alone or genetically fused to the N-terminal fragment of the cucumber mosaic virus (CMV) capsid protein-nCMV, rendering the antigens oligomeric. In a step-by-step manner, RNA was attached as a PAMP, and/or a universal Th-cell epitope was genetically added for additional Th. Finally, a PASP was added to the constructs by displaying the antigens highly organized and repetitively on the surface of CMV-derived virus-like particles (CuMV VLPs). Sera from immunized mice demonstrated that each component contributed stepwise to the immunogenicity of both proteins. All components combined in the CuMV VLP platform induced by far the highest antibody responses. In addition, the DV1 EDIII induced high levels of DENV-1-neutralizing antibodies only if displayed on VLPs. Thus, combining multiple cues typically associated with viruses results in optimal antibody responses.

6.
Vaccines (Basel) ; 9(6)2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34208059

RESUMEN

The delivery of HIV-1 envelope (Env) trimer-based immunogens on the surface of nanoparticles holds promise to promote immunogenicity with the aim of inducing a potent, durable and broad neutralizing antibody (bnAb) response. Towards that goal, we examined the covalent conjugation of Env to 100 nm and 200 nm silica nanoparticles (SiNPs) to optimize conjugation density and attachment stability. Env was redesigned to enable site-specific cysteine-mediated covalent conjugation while maintaining its structural integrity and antigenicity. Env was anchored to different sized SiNPs with a calculated spacing of 15 nm between adjacent trimers. Both particle sizes exhibited high in vitro stability over a seven-day period. After attachment, 100 nm particles showed better colloidal stability compared to 200 nm particles. Importantly, the antigenic profile of Env was not impaired by surface attachment, indicating that the quaternary structure was maintained. In vitro Env uptake by dendritic cells was significantly enhanced when Env was delivered on the surface of nanoparticles compared to soluble Env. Furthermore, multivalent Env displayed efficiently activated B cells even at Env concentrations in the low nanomolar range. In mice, antibody responses to nanoparticle-coupled Env were stronger compared to the free protein and had equivalent effects at lower doses and without adjuvant.

7.
Neuron ; 95(6): 1420-1432.e5, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28910624

RESUMEN

The cortex is organized as a hierarchical processing structure. Feedback from higher levels of the hierarchy, known as top-down signals, have been shown to be involved in attentional and contextual modulation of sensory responses. Here we argue that top-down input to the primary visual cortex (V1) from A24b and the adjacent secondary motor cortex (M2) signals a prediction of visual flow based on motor output. A24b/M2 sends a dense and topographically organized projection to V1 that targets most neurons in layer 2/3. By imaging the activity of A24b/M2 axons in V1 of mice learning to navigate a 2D virtual environment, we found that their activity was strongly correlated with locomotion and resulting visual flow feedback in an experience-dependent manner. When mice were trained to navigate a left-right inverted virtual environment, correlations of neural activity with behavior reversed to match visual flow. These findings are consistent with a predictive coding interpretation of visual processing.


Asunto(s)
Retroalimentación Sensorial/fisiología , Locomoción/fisiología , Corteza Motora/fisiología , Vías Nerviosas/fisiología , Corteza Visual/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA