RESUMEN
The vacuolar H(+)-ATPase (V-ATPase) establishes pH gradients along secretory and endocytic pathways. Progressive acidification is essential for proteolytic processing of prohormones and aggregation of soluble content proteins. The V-ATPase V(0) subunit is thought to have a separate role in budding and fusion events. Prolonged treatment of professional secretory cells with selective V-ATPase inhibitors (bafilomycin A1, concanamycin A) was used to investigate its role in secretory-granule biogenesis. As expected, these inhibitors eliminated regulated secretion and blocked prohormone processing. Drug treatment caused the formation of large, mixed organelles, with components of immature granules and lysosomes and some markers of autophagy. Markers of the trans-Golgi network and earlier secretory pathway were unaffected. Ammonium chloride and methylamine treatment blocked acidification to a similar extent as the V-ATPase inhibitors without producing mixed organelles. Newly synthesized granule content proteins appeared in mixed organelles, whereas mature secretory granules were spared. Following concanamycin treatment, selected membrane proteins enter tubulovesicular structures budding into the interior of mixed organelles. shRNA-mediated knockdown of the proteolipid subunit of V(0) also caused vesiculation of immature granules. Thus, V-ATPase has a role in protein sorting in immature granules that is distinct from its role in acidification.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Lisosomas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Vías Secretoras/efectos de los fármacos , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , Animales , Línea Celular , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/genética , Macrólidos/farmacología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/metabolismoRESUMEN
BACKGROUND: Peptidergic neurons store and secrete the contents of large dense core vesicles (LDCVs) from axon terminals and from dendrites. Secretion of peptides requires a highly regulated exocytotic mechanism, plus coordinated synthesis and transport of LDCVs to their sites of release. Although these trafficking events are critical to function, little is known regarding the dynamic behavior of LDCVs and the mechanisms by which their transport is regulated. Sensory neurons also package opiate receptors in peptide-containing LDCVs, which is thought to be important in pain sensation. Since peptide granules cannot be refilled locally after their contents are secreted, it is particularly important to understand how neurons support regulated release of peptides. RESULTS: A vector encoding soluble peptidylglycine alpha-hydroxylating monooxygenase fused to green fluorescent protein was constructed to address these questions in cultured primary peptidergic neurons of the trigeminal ganglion using time lapse confocal microscopy. The time course of release differs with secretagogue; the secretory response to depolarization with K+ is rapid and terminates within 15 minutes, while phorbol ester stimulation of secretion is maintained over a longer period. The data demonstrate fundamental differences between LDCV dynamics in axons and growth cones under basal conditions. CONCLUSIONS: Under basal conditions, LDCVs move faster away from the soma than toward the soma, but fewer LDCVs travel anterograde than retrograde. Stimulation decreased average anterograde velocity and increases granule pausing. Data from antibody uptake, quantification of enzyme secretion and appearance of pHluorin fluorescence demonstrate distributed release of peptides all along the axon, not just at terminals.
Asunto(s)
Neuronas/fisiología , Vías Secretoras/fisiología , Vesículas Secretoras/fisiología , Ganglio del Trigémino/fisiología , Actinas/metabolismo , Animales , Axones/efectos de los fármacos , Axones/fisiología , Células Cultivadas , Citoesqueleto/fisiología , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Oxigenasas de Función Mixta/metabolismo , Movimiento (Física) , Neuronas/efectos de los fármacos , Fármacos del Sistema Nervioso Periférico/farmacología , Ésteres del Forbol/farmacología , Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Vías Secretoras/efectos de los fármacos , Vesículas Secretoras/efectos de los fármacos , Vesículas Secretoras/metabolismo , Factores de Tiempo , Ganglio del Trigémino/efectos de los fármacosRESUMEN
The molecular mechanisms involved in the maturation of secretory granules, organelles that store hormones and neuropeptides, are poorly understood. As granule content proteins are processed, the composition of granule membranes changes, yielding constitutive-like secretion of immature content proteins and producing secretagogue-responsive mature granules. Constitutive-like secretion was not previously recognized as a process subject to regulation. We show that Kalirin and Trio, homologous Rho guanine nucleotide exchange factors (GEFs), which interact with a secretory granule resident protein, modulate cargo secretion from immature granules. Some of the Kalirin and Trio isoforms expressed in neuroendocrine cells colocalize with immature granules. Overexpression of their N-terminal GEF domain (GEF1) enhances secretion from immature granules, depleting cells of secretory cargo in the absence of secretagogue. This response requires GEF1 activity and is mimicked by Kalirin/Trio substrates Rac1 and RhoG. Accordingly, selective pharmacological inhibition of endogenous GEF1 activity decreases secretagogue-independent release of hormone precursors, accumulating product peptide in mature secretory granules. Kalirin/Trio modulation of cargo secretion from immature granules provides secretory cells with an extra layer of control over the sets of peptides released. Control of this step enhances the range of physiological responses that can be elicited, whereas lack of control could have pathological consequences.
Asunto(s)
Sistema Endocrino/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Neuronas/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Citoesqueleto/metabolismo , Eliminación de Gen , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Ratones , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Especificidad por SustratoRESUMEN
Kalirin is a GDP/GTP exchange factor (GEF) for Rho proteins that modulates the actin cytoskeleton in neurons. Alternative splicing generates Delta-isoforms, which encode the RhoGEF domain, but lack the N-terminal Sec14p domain and first 4 spectrin-like repeats of the full-length isoforms. Splicing has functional consequences, with Kal7 but not DeltaKal7 causing formation of dendritic spines. Cells lacking endogenous Kalirin were used to explore differences between these splice variants. Expression of DeltaKal7 in this system induces extensive lamellipodial sheets, while expression of Kal7 induces formation of adherent compact, round cells with abundant cortical actin. Based on in vitro and cell-based assays, Kal7 and DeltaKal7 are equally active GEFs, suggesting that other domains are involved in controlling cell morphology. Catalytically inactive Kal7 and a Kalirin fragment which includes only Sec14p and spectrin-like domains retain the ability to produce compact, round cells and fractionate as high molecular weight complexes. Separating the Sec14p domain from the spectrin-like repeats eliminates the ability of Kal7 to cause this response. The isolated Sec14p domain binds PI(3,5)P2 and PI3P, but does not alter cell morphology. We conclude that the Sec14p and N-terminal spectrin-like domains of Kalirin play critical roles in distinguishing the actions of full-length and Delta-Kalirin proteins.
Asunto(s)
Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Secuencias Repetitivas de Aminoácido , Animales , Forma de la Célula , Células Cultivadas , Citoesqueleto/metabolismo , Endocitosis , Proteínas Mutantes/metabolismo , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ratas , Relación Estructura-ActividadRESUMEN
Secretory granules carrying fluorescent cargo proteins are widely used to study granule biogenesis, maturation, and regulated exocytosis. We fused the soluble secretory protein peptidylglycine alpha-hydroxylating monooxygenase (PHM) to green fluorescent protein (GFP) to study granule formation. When expressed in AtT-20 or GH3 cells, the PHM-GFP fusion protein partitioned from endogenous hormone (adrenocorticotropic hormone, growth hormone) into separate secretory granule pools. Both exogenous and endogenous granule proteins were stored and released in response to secretagogue. Importantly, we found that segregation of content proteins is not an artifact of overexpression nor peculiar to GFP-tagged proteins. Neither luminal acidification nor cholesterol-rich membrane microdomains play essential roles in soluble content protein segregation. Our data suggest that intrinsic biophysical properties of cargo proteins govern their differential sorting, with segregation occurring during the process of granule maturation. Proteins that can self-aggregate are likely to partition into separate granules, which can accommodate only a few thousand copies of any content protein; proteins that lack tertiary structure are more likely to distribute homogeneously into secretory granules. Therefore, a simple "self-aggregation default" theory may explain the little acknowledged, but commonly observed, tendency for both naturally occurring and exogenous content proteins to segregate from each other into distinct secretory granules.
Asunto(s)
Proteínas/metabolismo , Vesículas Secretoras/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Transporte Biológico/efectos de los fármacos , Línea Celular , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Oxigenasas de Función Mixta/metabolismo , Modelos Biológicos , Complejos Multienzimáticos/metabolismo , Proteínas/ultraestructura , Proteínas Recombinantes de Fusión/metabolismo , Reproducibilidad de los Resultados , Vesículas Secretoras/ultraestructura , Solubilidad , Transfección , Vacuolas/ultraestructuraRESUMEN
The field of organellar proteomics has emerged as an attempt to minimize the complexity of the proteomics data obtained from whole cell and tissue extracts while maximizing the resolution on the protein composition of a single subcellular compartment. Standard methods involve lengthy density-based gradient and/or immunoaffinity purification steps followed by extraction, 1-DE or 2-DE, gel staining, in-gel tryptic digestion, and protein identification by MS. In this paper, we present an alternate approach to purify subcellular organelles containing a fluorescent reporter molecule. The gel-free procedure involves fluorescence-assisted sorting of the secretory granules followed by gentle extraction in a buffer compatible with tryptic digestion and MS. Once the subcellular organelle labeled, this procedure can be done in a single day, requires no major modification to any instrumentation and can be readily adapted to the study of other organelles. When applied to corticotrope secretory granules, it led to a much enriched granular fraction from which numerous proteins could be identified through MS.