Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Front Immunol ; 12: 678953, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140951

RESUMEN

The generation of post-translational modifications (PTMs) in human proteins is a physiological process leading to structural and immunologic variety in proteins, with potentially altered biological functions. PTMs often arise through normal responses to cellular stress, including general oxidative changes in the tissue microenvironment and intracellular stress to the endoplasmic reticulum or immune-mediated inflammatory stresses. Many studies have now illustrated the presence of 'neoepitopes' consisting of PTM self-proteins that induce robust autoimmune responses. These pathways of inflammatory neoepitope generation are commonly observed in many autoimmune diseases including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and type 1 diabetes (T1D), among others. This review will focus on one specific PTM to self-proteins known as citrullination. Citrullination is mediated by calcium-dependent peptidylarginine deiminase (PAD) enzymes, which catalyze deimination, the conversion of arginine into the non-classical amino acid citrulline. PADs and citrullinated peptides have been associated with different autoimmune diseases, notably with a prominent role in the diagnosis and pathology of rheumatoid arthritis. More recently, an important role for PADs and citrullinated self-proteins has emerged in T1D. In this review we will provide a comprehensive overview on the pathogenic role for PADs and citrullination in inflammation and autoimmunity, with specific focus on evidence for their role in T1D. The general role of PADs in epigenetic and transcriptional processes, as well as their crucial role in histone citrullination, neutrophil biology and neutrophil extracellular trap (NET) formation will be discussed. The latter is important in view of increasing evidence for a role of neutrophils and NETosis in the pathogenesis of T1D. Further, we will discuss the underlying processes leading to citrullination, the genetic susceptibility factors for increased recognition of citrullinated epitopes by T1D HLA-susceptibility types and provide an overview of reported autoreactive responses against citrullinated epitopes, both of T cells and autoantibodies in T1D patients. Finally, we will discuss recent observations obtained in NOD mice, pointing to prevention of diabetes development through PAD inhibition, and the potential role of PAD inhibitors as novel therapeutic strategy in autoimmunity and in T1D in particular.


Asunto(s)
Autoinmunidad , Citrulinación , Diabetes Mellitus Tipo 1/etiología , Diabetes Mellitus Tipo 1/metabolismo , Susceptibilidad a Enfermedades , Desiminasas de la Arginina Proteica/metabolismo , Animales , Modelos Animales de Enfermedad , Epigenómica , Epítopos/inmunología , Regulación de la Expresión Génica , Humanos , Inflamación/etiología , Inflamación/metabolismo , Isoenzimas/metabolismo , Procesamiento Proteico-Postraduccional , Desiminasas de la Arginina Proteica/genética , Transducción de Señal
2.
Expert Opin Ther Targets ; 25(4): 269-281, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33896351

RESUMEN

INTRODUCTION: Aberrant citrullination and excessive peptidylarginine deiminase (PAD) activity are detected in numerous challenging autoimmune diseases such as rheumatoid arthritis, inflammatory bowel diseases, systemic lupus erythematosus, multiple sclerosis, and type 1 diabetes. Because excessive PAD activity is a common denominator in these diseases, PADs are interesting potential therapeutic targets for future therapies. AREAS COVERED: This review summarizes the advances made in the design of PAD inhibitors, their utilization and therapeutic potential in preclinical mouse models of autoimmunity. Relevant literature encompasses studies from 1994 to 2021 that are available on PubMed.gov. EXPERT OPINION: Pan-PAD inhibition is a promising therapeutic strategy for autoimmune diseases. Drugs achieving pan-PAD inhibition were capable of ameliorating, reversing, and preventing clinical symptoms in preclinical mouse models. However, the implications for PADs in key biological processes potentially present a high risk for clinical complications and could hamper the translation of PAD inhibitors to the clinic. We envisage that PAD isozyme-specific inhibitors will improve the understanding the role of PAD isozymes in disease pathology, reduce the risk of side-effects and enhance prospects for future clinical translation.


Asunto(s)
Enfermedades Autoinmunes/tratamiento farmacológico , Terapia Molecular Dirigida , Desiminasas de la Arginina Proteica/antagonistas & inhibidores , Animales , Enfermedades Autoinmunes/enzimología , Enfermedades Autoinmunes/fisiopatología , Autoinmunidad , Citrulinación/efectos de los fármacos , Modelos Animales de Enfermedad , Diseño de Fármacos , Humanos , Isoenzimas , Ratones , Desiminasas de la Arginina Proteica/metabolismo
3.
Diabetes ; 70(2): 516-528, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33203696

RESUMEN

Protein citrullination plays a role in several autoimmune diseases. Its involvement in murine and human type 1 diabetes has recently been recognized through the discovery of antibodies and T-cell reactivity against citrullinated peptides. In the current study, we demonstrate that systemic inhibition of peptidylarginine deiminases (PADs), the enzymes mediating citrullination, through BB-Cl-amidine treatment, prevents diabetes development in NOD mice. This prevention was associated with reduced levels of citrullination in the pancreas, decreased circulating autoantibody titers against citrullinated glucose-regulated protein 78, and reduced spontaneous neutrophil extracellular trap formation of bone marrow-derived neutrophils. Moreover, BB-Cl-amidine treatment induced a shift from Th1 to Th2 cytokines in the serum and an increase in the frequency of regulatory T cells in the blood and spleen. In the pancreas, BB-Cl-amidine treatment preserved insulin production and was associated with a less destructive immune infiltrate characterized by reduced frequencies of effector memory CD4+ T cells and a modest reduction in the frequency of interferon-γ-producing CD4+ and CD8+ T cells. Our results point to a role of citrullination in the pathogenesis of autoimmune diabetes, with PAD inhibition leading to disease prevention through modulation of immune pathways. These findings provide insight in the potential of PAD inhibition for treating autoimmune diseases like type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Ornitina/análogos & derivados , Páncreas/efectos de los fármacos , Desiminasas de la Arginina Proteica/antagonistas & inhibidores , Animales , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Trampas Extracelulares/efectos de los fármacos , Trampas Extracelulares/metabolismo , Ratones , Ratones Endogámicos NOD , Ornitina/farmacología , Páncreas/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA