Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
2.
Haemophilia ; 20(6): e392-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24975823

RESUMEN

The tail bleeding model using haemophilic mice has been used as one of the standard assays for efficacy evaluation of novel antihaemophilic therapies at the preclinical level. A number of different configurations and endpoints have been proposed in the literature for this model, hindering interlaboratory comparisons. A particular configuration, known as the tail bleeding survival assay (TBS), adopted by several groups, involves measuring the ability of conscious haemophilic mice to survive exsanguination following tail transection. Major limitations to this configuration include ethical constraints and impaired quantitative determinations. The aim of this study was to standardize and validate a quantitative haemostatic assay for evaluation of antihaemophilic therapies employing an alternative to TBS, which involves a more humane endpoint associated with stable clot formation. Haemophilic mice were treated with vehicle or different doses of two antihaemophilic reference products licensed in Brazil. The haemostatic response was evaluated by our quantitative tail bleeding haemostatic assay (qTBA) over a period of 120 min and then quantified by dose-response modelling. We demonstrate that our qTBA method allows a direct relationship between the number of animals which achieved full haemostatic response and the dosage of both antihaemophilic factors evaluated over 120 min. In addition, the method sensitivity is suitable to demonstrate the conversion from a severe to a moderate haemophilia phenotype. Our proposed qTBA is easy to implement and constitutes an alternative and more ethical endpoint, which could be effectively used as a surrogate to the commonly employed survival endpoint, allowing quantitative haemostatic response evaluation associated with stable clot formation.


Asunto(s)
Tiempo de Sangría , Pruebas de Coagulación Sanguínea , Hemofilia A/sangre , Hemofilia A/diagnóstico , Animales , Modelos Animales de Enfermedad , Factor VIII/administración & dosificación , Factor VIII/metabolismo , Hemofilia A/tratamiento farmacológico , Hemostasis , Hemostáticos , Ratones , Ratones Noqueados
3.
Braz J Med Biol Res ; 57: e13107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166604

RESUMEN

Pancreatic bioengineering is a potential therapeutic alternative for type 1 diabetes (T1D) in which the pancreas is decellularized, generating an acellular extracellular matrix (ECM) scaffold, which may be reconstituted by recellularization with several cell types to generate a bioartificial pancreas. No consensus for an ideal pancreatic decellularization protocol exists. Therefore, we aimed to determine the best-suited detergent by comparing sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), and Triton X-100 at different concentrations. Murine (n=12) and human pancreatic tissue from adult brain-dead donors (n=06) was harvested in accordance with Institutional Ethical Committee of the University of São Paulo Medical School (CEP-FMUSP) and decellularized under different detergent conditions. DNA content, histological analysis, and transmission and scanning electron microscopy were assessed. The most adequate condition for pancreatic decellularization was found to be 4% SDC, displaying: a) effective cell removal; b) maintenance of extracellular matrix architecture; c) proteoglycans, glycosaminoglycans (GAGs), and collagen fibers preservation. This protocol was extrapolated and successfully applied to human pancreas decellularization. The acellular ECM scaffold generated was recelullarized using human pancreatic islets primary clusters. 3D clusters were generated using 0.5×104 cells and then placed on top of acellular pancreatic slices (25 and 50 µm thickness). These clusters tended to connect to the acellular matrix, with visible cells located in the periphery of the clusters interacting with the ECM network of the bioscaffold slices and continued to produce insulin. This study provided evidence on how to improve and accelerate the pancreas decellularization process, while maintaining its architecture and extracellular structure, aiming at pancreatic bioengineering.


Asunto(s)
Ácido Desoxicólico , Detergentes , Páncreas , Dodecil Sulfato de Sodio , Ingeniería de Tejidos , Andamios del Tejido , Animales , Detergentes/química , Detergentes/farmacología , Humanos , Páncreas/citología , Ratones , Dodecil Sulfato de Sodio/farmacología , Ácido Desoxicólico/farmacología , Ácido Desoxicólico/química , Andamios del Tejido/química , Ingeniería de Tejidos/métodos , Octoxinol/química , Matriz Extracelular , Diabetes Mellitus Tipo 1 , Microscopía Electrónica de Rastreo , Matriz Extracelular Descelularizada/química
4.
Clin Exp Immunol ; 171(2): 135-46, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23286940

RESUMEN

Type 1 diabetes mellitus (T1DM) results from death of insulin-secreting ß cells mediated by self-immune cells, and the consequent inability of the body to maintain insulin levels for appropriate glucose homeostasis. Probably initiated by environmental factors, this disease takes place in genetically predisposed individuals. Given the autoimmune nature of T1DM, therapeutics targeting immune cells involved in disease progress have been explored over the last decade. Several high-cost trials have been attempted to prevent and/or reverse T1DM. Although a definitive solution to cure T1DM is not yet available, a large amount of information about its nature and development has contributed greatly to both the improvement of patient's health care and design of new treatments. In this study, we discuss the role of different types of immune cells involved in T1DM pathogenesis and their therapeutic potential as targets and/or modified tools to treat patients. Recently, encouraging results and new approaches to sustain remnant ß cell mass and to increase ß cell proliferation by different cell-based means have emerged. Results coming from ongoing clinical trials employing cell therapy designed to arrest T1DM will probably proliferate in the next few years. Strategies under consideration include infusion of several types of stem cells, dendritic cells and regulatory T cells, either manipulated genetically ex vivo or non-manipulated. Their use in combination approaches is another therapeutic alternative. Cell-based interventions, without undesirable side effects, directed to block the uncontrollable autoimmune response may become a clinical reality in the next few years for the treatment of patients with T1DM.


Asunto(s)
Autoinmunidad/inmunología , Células Dendríticas/inmunología , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/terapia , Células Secretoras de Insulina/inmunología , Trasplante de Células Madre/métodos , Linfocitos T Reguladores/inmunología , Animales , Ensayos Clínicos como Asunto , Células Dendríticas/trasplante , Modelos Animales de Enfermedad , Humanos , Insulina/uso terapéutico , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Ratones Endogámicos NOD , Trasplante de Células Madre/tendencias , Linfocitos T Reguladores/trasplante
5.
Braz J Med Biol Res ; 56: e12854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37970920

RESUMEN

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Histona Metiltransferasas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Ensamble y Desensamble de Cromatina/genética , Mutaciones Letales Sintéticas/genética , Línea Celular , Factores de Transcripción/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo
6.
Braz J Med Biol Res ; 56: e12611, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37792778

RESUMEN

Islet transplantation represents a therapeutic option for type 1 diabetes (T1D). Long-term viability of transplanted islets requires improvement. Mesenchymal stromal cells (MSCs) have been proposed as adjuvants for islet transplantation facilitating grafting and functionality. Stem cell aggregation provides physiological interactions between cells and enhances the in situ concentration of modulators of inflammation and immunity. We established a hanging-drop culture of adult human skin fibroblast-like cells as spheroids, and skin spheroid-derived cells (SphCs) were characterized. We assessed the potential of SphCs in improving islet functionality by cotransplantation with a marginal mass of allogeneic islets in an experimental diabetic mouse model and characterized the secretome of SphCs by mass spectrometry-based proteomics. SphCs were characterized as multipotent progenitors and their coculture with anti-CD3 stimulated mouse splenocytes decreased CD4+ T cell proliferation with skewed cytokine secretion through an increase in the Th2/Th1 ratio profile. SphCs-conditioned media attenuated apoptosis of islets induced by cytokine challenge in vitro and importantly, intratesticular SphCs administration did not show tumorigenicity in immune-deficient mice. Moreover, SphCs improved glycemic control when cotransplanted with a marginal mass of allogeneic islets in a diabetic mouse model without pharmacological immunosuppression. SphCs' protein secretome differed from its paired skin fibroblast-like counterpart in containing 70% of up- and downregulated proteins and biological processes that overall positively influenced islets such as cytoprotection, cellular stress, metabolism, and survival. In summary, SphCs improved the performance of transplanted allogeneic islets in an experimental T1D model, without pharmacological immunosuppression. Future research is warranted to identify SphCs-secreted factors responsible for islets' endurance.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Trasplante de Células Madre Hematopoyéticas , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Humanos , Ratones , Animales , Adulto , Islotes Pancreáticos/metabolismo , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Citocinas/metabolismo
7.
Cytometry A ; 81(12): 1084-91, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23090904

RESUMEN

The recently emerged concept of cancer stem cell (CSC) has led to a new hypothesis on the basis for tumor progression. Basically, the CSC theory hypothesizes the presence of a hierarchically organized and relatively rare cell population, which is responsible for tumor initiation, self-renewal, and maintenance, in addition to accumulation of mutation and resistance to chemotherapy. CSCs have recently been described in breast cancer. Different genetic markers have been used to isolate breast CSCs, none of which have been correlated with the tumorigenicity or metastatic potential of the cells, limiting their precise characterization and clinical application in the development of therapeutic protocols. Here, we sought for subpopulations of CSCs by analyzing 10 judiciously chosen stem cell markers in a normal breast cell line (MCF10-A) and in four human breast cancer cell lines (MCF-7, MDA-MB-231, MDA-MB-435, and Hs578-T) displaying different degrees of metastatic and invasiveness potential. We were able to identify two markers, which are differentially expressed in nontumorigenic versus tumor cells. The CD90 marker was highly expressed in the malignant cell lines. Interestingly, the CD14 molecule displayed higher expression levels in the nontumorigenic cell line. Therefore, we demonstrated that these two markers, which are more commonly used to isolate and characterize stem cells, are differentially expressed in breast tumor cells, when compared with nontumorigenic breast cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Receptores de Lipopolisacáridos/análisis , Células Madre Neoplásicas/química , Antígenos Thy-1/análisis , Biomarcadores de Tumor/análisis , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , Femenino , Citometría de Flujo , Humanos , Receptores de Lipopolisacáridos/genética , Células MCF-7 , Metástasis de la Neoplasia , Células Madre Neoplásicas/patología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Antígenos Thy-1/genética
8.
Diabetologia ; 54(6): 1388-97, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21394492

RESUMEN

AIMS/HYPOTHESIS: Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. METHODS: Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. RESULTS: The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. CONCLUSIONS/INTERPRETATION: Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.


Asunto(s)
Apoptosis/efectos de los fármacos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Prolactina/farmacología , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Adulto , Apoptosis/fisiología , Inhibidores de Caspasas , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Citocinas/metabolismo , Diabetes Mellitus Tipo 1/cirugía , Humanos , Células Secretoras de Insulina/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/fisiología , Proteína X Asociada a bcl-2/metabolismo
9.
Breast Cancer Res Treat ; 119(3): 559-74, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19288189

RESUMEN

Glypican-3 (GPC3) is a proteoglycan involved in proliferation and cell survival. Several reports demonstrated that GPC3 is downregulated in some tumors, such as breast cancer. Previously, we determined that GPC3 reexpression in the murine mammary adenocarcinoma LM3 cells induced an impairment of their invasive and metastatic capacities, associated with a decrease of their motility and an increase of their cell death. We demonstrated that GPC3 inhibits canonical Wnt signaling, as well as it activates non canonical pathway. Now, we identified signaling pathways responsible for the pro-apoptotic role of GPC3 in LM3 cells. We found for the first time that GPC3 inhibits the PI3K/Akt anti-apoptotic pathway while it stimulates the p38MAPK stress-activated one. We report a concomitant modulation of CDK inhibitors as well as of pro- and anti-apoptotic molecules. Our results provide new clues regarding the mechanism involved in the modulation induced by GPC3 of mammary tumor cell growth and survival.


Asunto(s)
Adenocarcinoma/metabolismo , Apoptosis/fisiología , Neoplasias de la Mama/metabolismo , Glipicanos/metabolismo , Transducción de Señal/fisiología , Adenocarcinoma/genética , Animales , Western Blotting , Neoplasias de la Mama/genética , Línea Celular Tumoral , Separación Celular , Femenino , Citometría de Flujo , Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glipicanos/genética , Inmunohistoquímica , Ratones , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Transplant Proc ; 41(3): 947-51, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19376395

RESUMEN

Stem cells (SC) are potential therapeutic tools in the treatment of chronic renal diseases. Number and engraftment of SC in the injured sites are important for possible differentiation into renal cells and paracrine effect. The aim of this study was to analyze the effect of subcapsular injection of mesenchymal stem cells (MSC) in the 5/6 nephrectomy model (5/6 Nx). MSC obtained from Wistar rats were isolated by their capacity to adhere to plastic surfaces, characterized by flow cytometry, and analyzed by their differentiation potential into osteoblasts. MSC (2 x 10(5)) were injected into the subcapsule of the remnant kidney of male Wistar rats, and were followed for 15 or 30 days. 5/6 Nx rats showed significant hypertension at 15 and 30 days, which was reduced by MSC at 30 days. Increased albuminuria and serum creatinine at 15 and 30 days in 5/6 Nx rats were also reduced by subcapsular injection of MSC. We also observed a significant reduction of glomerulosclerosis index 30 days after injection of MSC. 4-6 diamidino-2-phenylindole dihydrochloride (DAPI)-stained MSC showed a migration of these cells into renal parenchyma 5, 15, and 30 days after subcapsular injection. In conclusion, our data demonstrated that subcapsular injection of MSC in 5/6 Nx rats is associated with renoprotective effects. These results suggest that locally implanted MSC in the kidney allow a large number of cells to migrate into the injured sites and demonstrate that subcapsular injection represent an effective route for MSC delivery.


Asunto(s)
Enfermedades Renales/cirugía , Trasplante de Células Madre Mesenquimatosas/métodos , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/inmunología , Diferenciación Celular , Modelos Animales de Enfermedad , Citometría de Flujo , Glomerulonefritis/cirugía , Inmunofenotipificación , Riñón/cirugía , Masculino , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteogénesis , Ratas , Ratas Wistar
11.
Braz. j. med. biol. res ; 57: e13107, fev.2024. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1568978

RESUMEN

Pancreatic bioengineering is a potential therapeutic alternative for type 1 diabetes (T1D) in which the pancreas is decellularized, generating an acellular extracellular matrix (ECM) scaffold, which may be reconstituted by recellularization with several cell types to generate a bioartificial pancreas. No consensus for an ideal pancreatic decellularization protocol exists. Therefore, we aimed to determine the best-suited detergent by comparing sodium dodecyl sulfate (SDS), sodium deoxycholate (SDC), and Triton X-100 at different concentrations. Murine (n=12) and human pancreatic tissue from adult brain-dead donors (n=06) was harvested in accordance with Institutional Ethical Committee of the University of São Paulo Medical School (CEP-FMUSP) and decellularized under different detergent conditions. DNA content, histological analysis, and transmission and scanning electron microscopy were assessed. The most adequate condition for pancreatic decellularization was found to be 4% SDC, displaying: a) effective cell removal; b) maintenance of extracellular matrix architecture; c) proteoglycans, glycosaminoglycans (GAGs), and collagen fibers preservation. This protocol was extrapolated and successfully applied to human pancreas decellularization. The acellular ECM scaffold generated was recelullarized using human pancreatic islets primary clusters. 3D clusters were generated using 0.5×104 cells and then placed on top of acellular pancreatic slices (25 and 50 μm thickness). These clusters tended to connect to the acellular matrix, with visible cells located in the periphery of the clusters interacting with the ECM network of the bioscaffold slices and continued to produce insulin. This study provided evidence on how to improve and accelerate the pancreas decellularization process, while maintaining its architecture and extracellular structure, aiming at pancreatic bioengineering.

12.
Braz J Med Biol Res ; 52(9): e8935, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31482979

RESUMEN

The scientific publication landscape is changing quickly, with an enormous increase in options and models. Articles can be published in a complex variety of journals that differ in their presentation format (online-only or in-print), editorial organizations that maintain them (commercial and/or society-based), editorial handling (academic or professional editors), editorial board composition (academic or professional), payment options to cover editorial costs (open access or pay-to-read), indexation, visibility, branding, and other aspects. Additionally, online submissions of non-revised versions of manuscripts prior to seeking publication in a peer-reviewed journal (a practice known as pre-printing) are a growing trend in biological sciences. In this changing landscape, researchers in biochemistry and molecular biology must re-think their priorities in terms of scientific output dissemination. The evaluation processes and institutional funding for scientific publications should also be revised accordingly. This article presents the results of discussions within the Department of Biochemistry, University of São Paulo, on this subject.


Asunto(s)
Bioquímica , Biología Molecular , Publicaciones Periódicas como Asunto/estadística & datos numéricos , Edición/tendencias , Investigación , Brasil , Humanos , Publicaciones Periódicas como Asunto/normas , Publicaciones Periódicas como Asunto/tendencias
13.
Bioinformatics ; 23(13): 1623-30, 2007 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-17463021

RESUMEN

MOTIVATION: A variety of biological cellular processes are achieved through a variety of extracellular regulators, signal transduction, protein-protein interactions and differential gene expression. Understanding of the mechanisms underlying these processes requires detailed molecular description of the protein and gene networks involved. To better understand these molecular networks, we propose a statistical method to estimate time-varying gene regulatory networks from time series microarray data. One well known problem when inferring connectivity in gene regulatory networks is the fact that the relationships found constitute correlations that do not allow inferring causation, for which, a priori biological knowledge is required. Moreover, it is also necessary to know the time period at which this causation occurs. Here, we present the Dynamic Vector Autoregressive model as a solution to these problems. RESULTS: We have applied the Dynamic Vector Autoregressive model to estimate time-varying gene regulatory networks based on gene expression profiles obtained from microarray experiments. The network is determined entirely based on gene expression profiles data, without any prior biological knowledge. Through construction of three gene regulatory networks (of p53, NF-kappaB and c-myc) for HeLa cells, we were able to predict the connectivity, Granger-causality and dynamics of the information flow in these networks. SUPPLEMENTARY INFORMATION: Additional figures may be found at http://mariwork.iq.usp.br/dvar/.


Asunto(s)
Algoritmos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , Modelos Biológicos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Proteoma/metabolismo , Transducción de Señal/fisiología , Simulación por Computador , Análisis de Regresión , Factores de Tiempo
14.
Mol Biotechnol ; 39(2): 89-95, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18327551

RESUMEN

Social and economical development is closely associated with technological innovation and a well-developed biotechnological industry. In the last few years, Brazil's scientific production has been steadily increasing; however, the number of patents is lagging behind, with technological and translational research requiring governmental incentive and reinforcement. The Cell and Molecular Therapy Center (NUCEL) was created to develop activities in the translational research field, addressing concrete problems found in biomedical and veterinary areas and actively searching for solutions by employing a genetic engineering approach to generate cell lines over-expressing recombinant proteins to be transferred to local biotech companies, aiming at furthering the development of a national competence for local production of biopharmaceuticals of widespread use and of life-saving importance. To this end, mammalian cell engineering technologies were used to generate cell lines over-expressing several different recombinant proteins of biomedical and biotechnological interest, namely, recombinant human Amylin/IAPP for diabetes treatment, human FVIII and FIX clotting factors for hemophilia, human and bovine FSH for fertility and reproduction, and human bone repair proteins (BMPs). Expression of some of these proteins is also being sought with the baculovirus/insect cell system (BEVS) which, in many cases, is able to deliver high-yield production of recombinant proteins with biological activity comparable to that of mammalian systems, but in a much more cost-effective manner. Transfer of some of these recombinant products to local Biotech companies has been pursued by taking advantage of the São Paulo State Foundation (FAPESP) and Federal Government (FINEP, CNPq) incentives for joint Research Development and Innovation partnership projects.


Asunto(s)
Biofarmacia , Comunicación Interdisciplinaria , Proteínas Recombinantes/biosíntesis , Transferencia de Tecnología , Amiloide/biosíntesis , Animales , Baculoviridae/metabolismo , Biotecnología , Proteínas Morfogenéticas Óseas/biosíntesis , Brasil , Línea Celular , Factor IX/biosíntesis , Factor VIII/biosíntesis , Hormona Folículo Estimulante/biosíntesis , Ingeniería Genética , Vectores Genéticos/biosíntesis , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos , Investigación/economía , Investigación/organización & administración , Spodoptera/virología
15.
Transplant Proc ; 40(2): 433-5, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18374092

RESUMEN

BACKGROUND: Microencapsulation of pancreatic islets with polymeric compounds constitutes an attractive alternative therapy for type 1 diabetes mellitus. The major limiting factor is the availability of a biocompatible and mechanically stable polymer. We investigated the potential of Biodritin, a novel polymer constituted of alginate and chondroitin sulfate, for islet microencapsulation. METHODS: Biodritin microcapsules were obtained using an air jet droplet generator and gelated with barium or calcium chloride. Microencapsulated rat insulinoma RINm5F cells were tested for viability using the [3-(4,5-dimetyl-thiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide] [MTT] colorimetric assay. Microencapsulated rat pancreatic islets were coincubated with macrophages derived from mouse peritoneal liquid to assess the immunomodulatory potential of the microcapsules, using quantitative real time-PCR (qPCR). Biodritin biocompatibility was demonstrated by subcutaneous injection of empty microcapsules into immunocompetent Wistar rats. Insulin secretion by microencapsulated human pancreatic islets was evaluated using an electrochemoluminescent assay. Microencapsulated human islets transplanted into chemically induced diabetic mice were monitored for reversal of hyperglycemia. RESULTS: The metabolic activity of microencapsulated RINm5F cells persisted for at least 15 days. Interleukin-1beta expression by macrophages was observed during coculture with islets microencapsulated with Biodritin-CaCl2, but not with Biodritin-BaCl2. No statistical difference in glucose-stimulated insulin secretion was observed between nonencapsulated and microencapsulated islets. Upon microencapsulated islet transplantation, the blood glucose level of diabetic mice normalized; they remained euglycemic for at least 60 days, displaying normal oral glucose tolerance tests. CONCLUSION: This study demonstrated that Biodritin can be used for islet microencapsulation and reversal of diabetes; however, further investigations are required to assess its potential for long-term transplantation.


Asunto(s)
Alginatos/farmacología , Cápsulas , Sulfatos de Condroitina/farmacología , Diabetes Mellitus Tipo 1/cirugía , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiología , Animales , Materiales Biocompatibles , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos , Insulina/metabolismo , Secreción de Insulina , Insulinoma , Islotes Pancreáticos/efectos de los fármacos , Macrófagos/citología , Macrófagos/fisiología , Ratas
16.
Genet Mol Res ; 7(2): 371-8, 2008 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-18551403

RESUMEN

Diffuse infiltrating gliomas are the most common tumors of the central nervous system. Gliomas are classified by the WHO according to their histopathological and clinical characteristics into four classes: grade I (pilocytic astrocytoma), grade II (diffuse astrocytoma), grade III (anaplastic astrocytoma), and grade IV (glioblastoma multiforme). Several genes have already been correlated with astrocytomas, but many others are yet to be uncovered. By analyzing the public SAGE data from 21 patients, comprising low malignant grade astrocytomas and glioblastomas, we found COL6A1 to be differentially expressed, confirming this finding by real time RT-PCR in 66 surgical samples. To the best of our knowledge, COL6A1 has never been described in gliomas. The expression of this gene has significantly different means when normal glia is compared with low-grade astrocytomas (grades I and II) and high-grade astrocytomas (grades III and IV), with a tendency to be greater in higher grade samples, thus rendering it a powerful tumor marker.


Asunto(s)
Astrocitoma/genética , Colágeno Tipo VI/genética , Perfilación de la Expresión Génica , Astrocitoma/patología , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Arq Neuropsiquiatr ; 66(2A): 238-41, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18545790

RESUMEN

Malignant brain tumor experimental models tend to employ cells that are immunologically compatible with the receptor animal. In this study, we have proposed an experimental model of encephalic tumor development by injecting C6 cells into athymic Rowett rats, aiming at reaching a model which more closely resembles to the human glioma tumor. In our model, we observed micro-infiltration of tumor cell clusters in the vicinity of the main tumor mass, and of more distal isolated tumor cells immersed in normal encephalic parenchyma. This degree of infiltration is superior to that usually observed in other C6 models.


Asunto(s)
Neoplasias Encefálicas/patología , Glioma/patología , Animales , Modelos Animales de Enfermedad , Femenino , Invasividad Neoplásica , Ratas , Ratas Desnudas
18.
Braz. j. med. biol. res ; 56: e12854, 2023. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1520474

RESUMEN

During the tumorigenic process, cancer cells may become overly dependent on the activity of backup cellular pathways for their survival, representing vulnerabilities that could be exploited as therapeutic targets. Certain molecular vulnerabilities manifest as a synthetic lethality relationship, and the identification and characterization of new synthetic lethal interactions may pave the way for the development of new therapeutic approaches for human cancer. Our goal was to investigate a possible synthetic lethal interaction between a member of the Chromodomain Helicase DNA binding proteins family (CHD4) and a member of the histone methyltransferases family (SETDB1) in the molecular context of a cell line (Hs578T) representing the triple negative breast cancer (TNBC), a subtype of breast cancer lacking validated molecular targets for treatment. Therefore, we employed the CRISPR-Cas9 gene editing tool to individually or simultaneously introduce indels in the genomic loci corresponding to the catalytic domains of SETDB1 and CHD4 in the Hs578T cell line. Our main findings included: a) introduction of indels in exon 22 of SETDB1 sensitized Hs578T to the action of the genotoxic chemotherapy doxorubicin; b) by sequentially introducing indels in exon 22 of SETDB1 and exon 23 of CHD4 and tracking the percentage of the remaining wild-type sequences in the mixed cell populations generated, we obtained evidence of the existence of a synthetic lethality interaction between these genes. Considering the lack of molecular targets in TNBC, our findings provided valuable insights for development of new therapeutic approaches not only for TNBC but also for other cancer types.

19.
Braz. j. med. biol. res ; 56: e12611, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1513883

RESUMEN

Islet transplantation represents a therapeutic option for type 1 diabetes (T1D). Long-term viability of transplanted islets requires improvement. Mesenchymal stromal cells (MSCs) have been proposed as adjuvants for islet transplantation facilitating grafting and functionality. Stem cell aggregation provides physiological interactions between cells and enhances the in situ concentration of modulators of inflammation and immunity. We established a hanging-drop culture of adult human skin fibroblast-like cells as spheroids, and skin spheroid-derived cells (SphCs) were characterized. We assessed the potential of SphCs in improving islet functionality by cotransplantation with a marginal mass of allogeneic islets in an experimental diabetic mouse model and characterized the secretome of SphCs by mass spectrometry-based proteomics. SphCs were characterized as multipotent progenitors and their coculture with anti-CD3 stimulated mouse splenocytes decreased CD4+ T cell proliferation with skewed cytokine secretion through an increase in the Th2/Th1 ratio profile. SphCs-conditioned media attenuated apoptosis of islets induced by cytokine challenge in vitro and importantly, intratesticular SphCs administration did not show tumorigenicity in immune-deficient mice. Moreover, SphCs improved glycemic control when cotransplanted with a marginal mass of allogeneic islets in a diabetic mouse model without pharmacological immunosuppression. SphCs' protein secretome differed from its paired skin fibroblast-like counterpart in containing 70% of up- and downregulated proteins and biological processes that overall positively influenced islets such as cytoprotection, cellular stress, metabolism, and survival. In summary, SphCs improved the performance of transplanted allogeneic islets in an experimental T1D model, without pharmacological immunosuppression. Future research is warranted to identify SphCs-secreted factors responsible for islets' endurance.

20.
Oncogene ; 25(59): 7723-39, 2006 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-16799639

RESUMEN

Progestin regulation of gene expression was assessed in the progestin-dependent murine tumor line C4HD which requires MPA, a synthetic progestin, for in vivo growth and expresses high levels of progesterone receptor (PR). By using suppressive subtractive hybridization, caveolin-1 was identified as a gene whose expression was increased with in vivo MPA treatment. By Northern and Western blot analysis, we further confirmed that caveolin-1 mRNA and protein expression increased in MPA-treated tumors as compared with untreated tumors. When primary cultures of C4HD cells were treated in vitro with MPA, caveolin-1 levels also increased, effect that was abolished by pre-treatment with progestin antagonist RU486. In addition, MPA promoted strong caveolin-1 promoter transcriptional activation both in mouse and human breast cancer cells. We also showed that MPA regulation of caveolin-1 expression involved in activation of two signaling pathways: MAPK and PI-3K. Short-term MPA treatment of C4HD cells led to tyrosine phosphorylation of caveolin-1 protein, where Src was the kinase involved. Additionally, we showed that MPA-induced association of caveolin-1 and PR, which was detected by coimmunoprecipitation and by confocal microscopy. Finally, we proved that MPA-induced proliferation of C4HD cells was inhibited by suppression of caveolin-1 expression with antisense oligodeoxynucleotides to caveolin-1 mRNA. Furthermore, we observed that inhibition of caveolin-1 expression abrogated PR capacity to induced luciferase activity from a progesterone response element-driven reporter plasmid. Comprehensively, our results demonstrated for the first time that caveolin-1 expression is upregulated by progestin in breast cancer. We also demonstrated that caveolin-1 is a downstream effector of MPA that is partially responsible for the stimulation of growth of breast cancer cells.


Asunto(s)
Caveolina 1/fisiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Mamarias Experimentales/patología , Acetato de Medroxiprogesterona/farmacología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Caveolina 1/genética , Femenino , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Fosfatidilinositol 3-Quinasas/fisiología , Fosforilación , Regiones Promotoras Genéticas , Receptores de Progesterona/efectos de los fármacos , Receptores de Progesterona/fisiología , Familia-src Quinasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA