Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 621(7980): 753-759, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612509

RESUMEN

Privileged chiral catalysts-those that share common structural features and are enantioselective across a range of reactions-continue to transform the chemical-research landscape1. In recent years, new reactivity modes have been achieved through excited-state catalysis, processes activated by light, but it is unclear if the selectivity of ground-state privileged catalysts can be matched. Although the interception of photogenerated intermediates by ground-state cycles has partially addressed this challenge2, single, chiral photocatalysts that simultaneously regulate reactivity and selectivity are conspicuously scarce3. So far, precision donor-acceptor recognition motifs remain crucial in enantioselective photocatalyst design4. Here we show that chiral Al-salen complexes, which have well-defined photophysical properties, can be used for the efficient photochemical deracemization5 of cyclopropyl ketones (up to 98:2 enantiomeric ratio (e.r.)). Irradiation at λ = 400 nm (violet light) augments the reactivity of the commercial catalyst to enable reactivity and enantioselectivity to be regulated simultaneously. This circumvents the need for tailored catalyst-substrate recognition motifs. It is predicted that this study will stimulate a re-evaluation of many venerable (ground-state) chiral catalysts in excited-state processes, ultimately leading to the identification of candidates that may be considered 'privileged' in both reactivity models.

2.
Biochem Biophys Res Commun ; 714: 149947, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38657442

RESUMEN

Here, we characterized the p.Arg583His (R583H) Kv7.1 mutation, identified in two unrelated families suffered from LQT syndrome. This mutation is located in the HС-HD linker of the cytoplasmic portion of the Kv7.1 channel. This linker, together with HD helix are responsible for binding the A-kinase anchoring protein 9 (AKAP9), Yotiao. We studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1 along with KCNE1 subunit and Yotiao protein, using the whole-cell patch-clamp technique. We found that R583H mutation, even at the heterozygous state, impedes IKs activation. Molecular modeling showed that HС and HD helixes of the C-terminal part of Kv7.1 channel are swapped along the C-terminus length of the channel and that R583 position is exposed to the outer surface of HC-HD tandem coiled-coil. Interestingly, the adenylate cyclase activator, forskolin had a smaller effect on the mutant channel comparing with the WT protein, suggesting that R583H mutation may disrupt the interaction of the channel with the adaptor protein Yotiao and, therefore, may impair phosphorylation of the KCNQ1 channel.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Proteínas del Citoesqueleto , Canal de Potasio KCNQ1 , Síndrome de QT Prolongado , Animales , Femenino , Humanos , Masculino , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/química , Células CHO , Cricetulus , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/química , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Modelos Moleculares , Mutación , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica
3.
Biochemistry (Mosc) ; 89(3): 543-552, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648771

RESUMEN

Brugada syndrome (BrS) is an inherited disease characterized by right precordial ST-segment elevation in the right precordial leads on electrocardiograms (ECG), and high risk of life-threatening ventricular arrhythmia and sudden cardiac death (SCD). Mutations in the responsible genes have not been fully characterized in the BrS patients, except for the SCN5A gene. We identified a new genetic variant, c.1189C>T (p.R397C), in the KCNH2 gene in the asymptomatic male proband diagnosed with BrS and mild QTc shortening. We hypothesize that this variant could alter IKr-current and may be causative for the rare non-SCN5A-related form of BrS. To assess its pathogenicity, we performed patch-clamp analysis on IKr reconstituted with this KCNH2 mutation in the Chinese hamster ovary cells and compared the phenotype with the wild type. It appeared that the R397C mutation does not affect the IKr density, but facilitates activation, hampers inactivation of the hERG channels, and increases magnitude of the window current suggesting that the p.R397C is a gain-of-function mutation. In silico modeling demonstrated that this missense mutation potentially leads to the shortening of action potential in the heart.


Asunto(s)
Síndrome de Brugada , Canal de Potasio ERG1 , Mutación con Ganancia de Función , Adulto , Animales , Humanos , Masculino , Persona de Mediana Edad , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Células CHO , Cricetulus , Electrocardiografía , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Mutación Missense
4.
EMBO Rep ; 22(9): e52878, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34328245

RESUMEN

Helicobacter pylori infection constitutes one of the major risk factors for the development of gastric diseases including gastric cancer. The activation of nuclear factor-kappa-light-chain-enhancer of activated B cells (NF-κB) via classical and alternative pathways is a hallmark of H. pylori infection leading to inflammation in gastric epithelial cells. Tumor necrosis factor receptor-associated factor (TRAF)-interacting protein with forkhead-associated domain (TIFA) was previously suggested to trigger classical NF-κB activation, but its role in alternative NF-κB activation remains unexplored. Here, we identify TRAF6 and TRAF2 as binding partners of TIFA, contributing to the formation of TIFAsomes upon H. pylori infection. Importantly, the TIFA/TRAF6 interaction enables binding of TGFß-activated kinase 1 (TAK1), leading to the activation of classical NF-κB signaling, while the TIFA/TRAF2 interaction causes the transient displacement of cellular inhibitor of apoptosis 1 (cIAP1) from TRAF2, and proteasomal degradation of cIAP1, to facilitate the activation of the alternative NF-κB pathway. Our findings therefore establish a dual function of TIFA in the activation of classical and alternative NF-κB signaling in H. pylori-infected gastric epithelial cells.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Helicobacter pylori/metabolismo , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo
5.
Chem Rev ; 121(1): 80-109, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-32567848

RESUMEN

This review summarizes synthetic developments reported from 1987 to 2019 that exploit C-C single bond cleavage of cyclopropylamine-based systems. The synthetic and mechanistic aspects of key methodologies are highlighted, and examples where aminocyclopropanes are exploited as key intermediates in multistep synthesis are also discussed. The review encompasses cases where aminocyclopropanes participate in polar reactions, pericyclic processes, radical-based reactions, and C-C bond activations.

6.
Cell Mol Life Sci ; 79(8): 461, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35913642

RESUMEN

The human pathogen Helicobacter pylori represents a risk factor for the development of gastric diseases including cancer. The H. pylori-induced transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is involved in the pro-inflammatory response and cell survival in the gastric mucosa, and represents a trailblazer of gastric pathophysiology. Termination of nuclear NF-κB heterodimer RelA/p50 activity is regulated by the ubiquitin-RING-ligase complex elongin-cullin-suppressor of cytokine signalling 1 (ECSSOCS1), which leads to K48-ubiquitinylation and degradation of RelA. We found that deubiquitinylase (DUB) ubiquitin specific protease 48 (USP48), which interacts with the COP9 signalosome (CSN) subunit CSN1, stabilises RelA by deubiquitinylation and thereby promotes the transcriptional activity of RelA to prolong de novo synthesis of DUB A20 in H. pylori infection. An important role of A20 is the suppression of caspase-8 activity and apoptotic cell death. USP48 thus enhances the activity of A20 to reduce apoptotic cell death in cells infected with H. pylori. Our results, therefore, define a synergistic mechanism by which USP48 and A20 regulate RelA and apoptotic cell death in H. pylori infection.


Asunto(s)
Infecciones por Helicobacter , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Proteasas Ubiquitina-Específicas , Supervivencia Celular , Helicobacter pylori , Humanos , FN-kappa B/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
7.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38138989

RESUMEN

Regulatory adenine nucleotide-binding cystathionine ß-synthase (CBS) domains are widespread in proteins; however, information on the mechanism of their modulating effects on protein function is scarce. The difficulty in obtaining structural data for such proteins is ascribed to their unusual flexibility and propensity to form higher-order oligomeric structures. In this study, we deleted the most movable domain from the catalytic part of a CBS domain-containing bacterial inorganic pyrophosphatase (CBS-PPase) and characterized the deletion variant both structurally and functionally. The truncated CBS-PPase was inactive but retained the homotetrameric structure of the full-size enzyme and its ability to bind a fluorescent AMP analog (inhibitor) and diadenosine tetraphosphate (activator) with the same or greater affinity. The deletion stabilized the protein structure against thermal unfolding, suggesting that the deleted domain destabilizes the structure in the full-size protein. A "linear" 3D structure with an unusual type of domain swapping predicted for the truncated CBS-PPase by Alphafold2 was confirmed by single-particle electron microscopy. The results suggest a dual role for the CBS domains in CBS-PPase regulation: they allow for enzyme tetramerization, which impedes the motion of one catalytic domain, and bind adenine nucleotides to mitigate or aggravate this effect.


Asunto(s)
Cistationina betasintasa , Pirofosfatasas , Pirofosfatasas/metabolismo , Cistationina betasintasa/genética , Cistationina betasintasa/metabolismo , Dominio Catalítico , Proteínas Bacterianas/metabolismo , Nucleótidos
8.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569503

RESUMEN

Formation of compact dinucleosomes (CODIs) occurs after collision between adjacent nucleosomes at active regulatory DNA regions. Although CODIs are likely dynamic structures, their structural heterogeneity and dynamics were not systematically addressed. Here, single-particle Förster resonance energy transfer (spFRET) and electron microscopy were employed to study the structure and dynamics of CODIs. spFRET microscopy in solution and in gel revealed considerable uncoiling of nucleosomal DNA from the histone octamer in a fraction of CODIs, suggesting that at least one of the nucleosomes is destabilized in the presence of the adjacent closely positioned nucleosome. Accordingly, electron microscopy analysis suggests that up to 30 bp of nucleosomal DNA are involved in transient uncoiling/recoiling on the octamer. The more open and dynamic nucleosome structure in CODIs cannot be stabilized by histone chaperone Spt6. The data suggest that proper internucleosomal spacing is an important determinant of chromatin stability and support the possibility that CODIs could be intermediates of chromatin disruption.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Nucleosomas , Cromatina , ADN/química , Microscopía Electrónica
9.
Cell Mol Life Sci ; 78(10): 4765-4783, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33825941

RESUMEN

Infection with H. pylori induces a strong host cellular response represented by induction of a set of molecular signaling pathways, expression of proinflammatory cytokines and changes in proliferation. Chronic infection and inflammation accompanied by secretory dysfunction can result in the development of gastric metaplasia and gastric cancer. Currently, it has been determined that the regulation of many cellular processes involves ubiquitinylation of molecular effectors. The binding of ubiquitin allows the substrate to undergo a change in function, to interact within multimolecular signaling complexes and/or to be degraded. Dysregulation of the ubiquitinylation machinery contributes to several pathologies, including cancer. It is not understood in detail how H. pylori impacts the ubiquitinylation of host substrate proteins. The aim of this review is to summarize the existing literature in this field, with an emphasis on the role of E3 ubiquitin ligases in host cell homeodynamics, gastric pathophysiology and gastric cancer.


Asunto(s)
Infecciones por Helicobacter/metabolismo , Helicobacter pylori/patogenicidad , Neoplasias Gástricas/metabolismo , Ubiquitina/metabolismo , Animales , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Infecciones por Helicobacter/complicaciones , Humanos , Transducción de Señal/fisiología , Neoplasias Gástricas/etiología , Neoplasias Gástricas/microbiología , Ubiquitina-Proteína Ligasas/metabolismo
10.
Biochemistry (Mosc) ; 87(1): 1-9, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35491019

RESUMEN

Chaperonins provide proper folding of proteins in vivo and in vitro and, as was thought until recently, are characteristic of prokaryotes, eukaryotes, and archaea. However, it turned out that some bacteria viruses (bacteriophages) encode their own chaperonins. This review presents results of the investigations of the first representatives of this new chaperonin group: the double-ring EL chaperonin and the single-ring OBP and AR9 chaperonins. Biochemical properties and structure of the phage chaperonins were compared within the group and with other known group I and group II chaperonins.


Asunto(s)
Bacteriófagos , Chaperoninas , Archaea/metabolismo , Chaperoninas/química , Chaperoninas/metabolismo
11.
Sensors (Basel) ; 22(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35808264

RESUMEN

Air pollution has become a serious problem in all megacities. It is necessary to continuously monitor the state of the atmosphere, but pollution data received using fixed stations are not sufficient for an accurate assessment of the aerosol pollution level of the air. Mobility in measuring devices can significantly increase the spatiotemporal resolution of the received data. Unfortunately, the quality of readings from mobile, low-cost sensors is significantly inferior to stationary sensors. This makes it necessary to evaluate the various characteristics of monitoring systems depending on the properties of the mobile sensors used. This paper presents an approach in which the time of pollution detection is considered a random variable. To the best of our knowledge, we are the first to deduce the cumulative distribution function of the pollution detection time depending on the features of the monitoring system. The obtained distribution function makes it possible to optimize some characteristics of air pollution detection systems in a smart city.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente , Material Particulado/análisis
12.
Int J Mol Sci ; 23(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35163805

RESUMEN

Gastric cancer is one of the leading causes of the cancer-related mortality worldwide. The etiology of this disease is complex and involves genetic predisposition and environmental factors, including Helicobacter pylori. Infection of the stomach with H. pylori leads to gastritis and gastric atrophy, which can progress stepwise to gastric cancer. Matrix metalloproteinases (MMPs) actively participate in the pathology development. The further progression of gastric cancer seems to be less dependent on bacteria but of intra-tumor cell dynamics. Bioinformatics data confirmed an important role of the extracellular matrix constituents and specific MMPs in stomach carcinoma invasion and metastasis, and revised their potential as predictors of the disease outcome. In this review, we describe, in detail, the impact of MMPs in H. pylori-associated gastritis and gastric cancer.


Asunto(s)
Gastritis/microbiología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/patogenicidad , Metaloproteinasas de la Matriz/metabolismo , Neoplasias Gástricas/microbiología , Biología Computacional , Progresión de la Enfermedad , Gastritis/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Neoplasias Gástricas/metabolismo
13.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35887302

RESUMEN

We identified a single nucleotide variation (SNV) (c.1264A > G) in the KCNQ1 gene in a 5-year-old boy who presented with a prolonged QT interval. His elder brother and mother, but not sister and father, also had this mutation. This missense mutation leads to a p.Lys422Glu (K422E) substitution in the Kv7.1 protein that has never been mentioned before. We inserted this substitution in an expression plasmid containing Kv7.1 cDNA and studied the electrophysiological characteristics of the mutated channel expressed in CHO-K1, using the whole-cell configuration of the patch-clamp technique. Expression of the mutant Kv7.1 channel in both homo- and heterozygous conditions in the presence of auxiliary subunit KCNE1 results in a significant decrease in tail current densities compared to the expression of wild-type (WT) Kv7.1 and KCNE1. This study also indicates that K422E point mutation causes a dominant negative effect. The mutation was not associated with a trafficking defect; the mutant channel protein was confirmed to localize at the cell membrane. This mutation disrupts the poly-Lys strip in the proximal part of the highly conserved cytoplasmic A−B linker of Kv7.1 that was not shown before to be crucial for channel functioning.


Asunto(s)
Canal de Potasio KCNQ1 , Síndrome de QT Prolongado , Anciano , Preescolar , Heterocigoto , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Síndrome de QT Prolongado/genética , Masculino , Mutación , Mutación Puntual
14.
Wiad Lek ; 75(9 pt 1): 2103-2107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36256936

RESUMEN

OBJECTIVE: The aim: To analyze the features of changes in the functional state of the vascular endothelium of handball players in the dynamics of the training process, at different levels of the body's hypoxic state. PATIENTS AND METHODS: Materials and methods: Theoretical methods, the method of Corretti et al. with the use of high-resolution ultrasound, Fisher test with the calculation of the Fisher criterion and the Bland-Altman method. The study of the vasomotor function of the vascular endothelium was carried out of young men 18-20 y.o., who did not go in for sports and which were systematically played handball. The brachial artery diameter, maximum linear blood flow velocity, volumetric blood flow velocity were registered in the state of relative rest after artificially created reactive hyperemia. RESULTS: Results: The primary results obtained showed that in the process of long-term adaptation to systematic muscular work, a pronounced vasodilation effect was observed. Subsequent analyze of changes in the functional state of the vascular endothelium of young sportsmen during the macrocycle preparation different levels of the body's hypoxic state manifested the following. The young men-athletes had more pronounced vasodilation effect, the values of the linear and volumetric blood flow velocity both in the state of relative rest and at the peak of the artificially created hyperemia were significantly higher than in the young men, who did not go in for sports. CONCLUSION: Conclusions: Suggested that the systematic muscular work contributes to a significant intensification of the oxidation pathway of nitric oxide formation from L-arginine with the participation of endothelial NO-synthase.


Asunto(s)
Endotelio Vascular , Hiperemia , Masculino , Adolescente , Humanos , Óxido Nítrico/metabolismo , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/metabolismo , Vasodilatación , Hiperemia/metabolismo , Arginina/metabolismo
15.
Angew Chem Int Ed Engl ; 61(32): e202205007, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35611866

RESUMEN

An endo-directing group strategy enables enantioselective (3+1+2) cycloadditions that are triggered by carbonylative C-C bond activation of cyclopropanes. These processes are rare examples of cycloadditions where C-C bond oxidative addition is enantiodetermining, and the first where this is achieved within the context of a multicomponent (higher order) reaction design.


Asunto(s)
Ciclopropanos , Catálisis , Reacción de Cicloadición , Ciclopropanos/química , Estereoisomerismo
16.
Angew Chem Int Ed Engl ; 61(30): e202205277, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35536157

RESUMEN

The success of saturated, fluorinated heterocycles in contemporary drug discovery provides a stimulus for creative endeavor in main group catalysis. Motivated by the ubiquity of isochromans across the bioactive small molecule spectrum, the prominence of the anomeric effect in regulating conformation, and the metabolic lability of the benzylic position, iodine(I)/iodine(III) catalysis has been leveraged for the stereocontrolled generation of selectively fluorinated analogs. To augment the current arsenal of fluorocyclization reactions involving carboxylic acid derivatives, the reaction of readily accessible 2-vinyl benzaldehydes is disclosed (up to >95 : 05 d.r. and 97 : 03 e.r.). Key stereoelectronic interactions manifest themselves in the X-ray crystal structures of the products, thereby validating the [CH2 -CHF] fragment as a stereoelectronic mimic of the [O-CH(OR)] acetal motif.


Asunto(s)
Yodo , Catálisis , Yoduros , Yodo/química , Conformación Molecular
17.
Protein Expr Purif ; 183: 105864, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33677084

RESUMEN

In this study, we describe an optimized method of obtaining virus-like particles (VLPs) of the recombinant hepatitis C virus (HCV) core protein (HCcAg) expressed in yeast cells (Pichia pastoris), which can be used for the construction of diagnostic test systems and vaccine engineering. The described simplified procedure was developed to enable in vitro self-assembly of HCcAg molecules into VLPs during protein purification. In brief, the HCcAg protein was precipitated from yeast cell lysates with ammonium sulfate and renatured by gel filtration on Sephadex G-25 under reducing conditions. VLPs were self-assembled after the removal of the reducing agent by gel filtration on Sephadex G-25. Protein purity and specificity were evaluated by SDS-PAGE and immunoblotting analysis. The molecular mass of VLPs and their relative quantity were measured by HPLC, followed by confirmation of VLPs production and estimation of their shape and size by transmission electron microscopy. As a result, we obtained recombinant HCcAg preparation (with ~90% purity) in the form of VLPs and monomers, which has been used to produce hybridomas secreting monoclonal antibodies (mAbs) against HCcAg.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/inmunología , Hepacivirus , Anticuerpos contra la Hepatitis C/inmunología , Saccharomycetales , Vacunas de Partículas Similares a Virus , Proteínas del Núcleo Viral , Vacunas contra Hepatitis Viral , Animales , Femenino , Hepacivirus/genética , Hepacivirus/inmunología , Ratones , Ratones Endogámicos BALB C , Saccharomycetales/genética , Saccharomycetales/metabolismo , Vacunas de Partículas Similares a Virus/biosíntesis , Vacunas de Partículas Similares a Virus/genética , Vacunas de Partículas Similares a Virus/inmunología , Vacunas de Partículas Similares a Virus/aislamiento & purificación , Proteínas del Núcleo Viral/biosíntesis , Proteínas del Núcleo Viral/genética , Proteínas del Núcleo Viral/inmunología , Proteínas del Núcleo Viral/aislamiento & purificación , Vacunas contra Hepatitis Viral/biosíntesis , Vacunas contra Hepatitis Viral/genética , Vacunas contra Hepatitis Viral/inmunología , Vacunas contra Hepatitis Viral/aislamiento & purificación
18.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34445356

RESUMEN

Ferritins comprise a conservative family of proteins found in all species and play an essential role in resistance to redox stress, immune response, and cell differentiation. Sponges (Porifera) are the oldest Metazoa that show unique plasticity and regenerative potential. Here, we characterize the ferritins of two cold-water sponges using proteomics, spectral microscopy, and bioinformatic analysis. The recently duplicated conservative HdF1a/b and atypical HdF2 genes were found in the Halisarca dujardini genome. Multiple related transcripts of HpF1 were identified in the Halichondria panicea transcriptome. Expression of HdF1a/b was much higher than that of HdF2 in all annual seasons and regulated differently during the sponge dissociation/reaggregation. The presence of the MRE and HRE motifs in the HdF1 and HdF2 promotor regions and the IRE motif in mRNAs of HdF1 and HpF indicates that sponge ferritins expression depends on the cellular iron and oxygen levels. The gel electrophoresis combined with specific staining and mass spectrometry confirmed the presence of ferric ions and ferritins in multi-subunit complexes. The 3D modeling predicts the iron-binding capacity of HdF1 and HpF1 at the ferroxidase center and the absence of iron-binding in atypical HdF2. Interestingly, atypical ferritins lacking iron-binding capacity were found in genomes of many invertebrate species. Their function deserves further research.


Asunto(s)
Ferritinas/genética , Poríferos/genética , Animales , Secuencia Conservada , Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Redes y Vías Metabólicas/genética , Modelos Moleculares , Filogenia , Poríferos/clasificación , Poríferos/metabolismo , Dominios Proteicos/genética , Análisis de Secuencia de ADN , Transcriptoma/fisiología
19.
J Struct Biol ; 209(2): 107439, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31870903

RESUMEN

Chaperonins are ubiquitously present protein complexes, which assist the proper folding of newly synthesized proteins and prevent aggregation of denatured proteins in an ATP-dependent manner. They are classified into group I (bacterial, mitochondrial, chloroplast chaperonins) and group II (archaeal and eukaryotic cytosolic variants). However, both of these groups do not include recently discovered viral chaperonins. Here, we solved the symmetry-free cryo-EM structures of a single-ring chaperonin encoded by the gene 246 of bacteriophage OBP Pseudomonas fluorescens, in the nucleotide-free, ATPγS-, and ADP-bound states, with resolutions of 4.3 Å, 5.0 Å, and 6 Å, respectively. The structure of OBP chaperonin reveals a unique subunit arrangement, with three pairs of subunits and one unpaired subunit. Each pair combines subunits in two possible conformations, differing in nucleotide-binding affinity. The binding of nucleotides results in the increase of subunits' conformational variability. Due to its unique structural and functional features, OBP chaperonin can represent a new group.


Asunto(s)
Chaperonina 60/química , Chaperoninas/ultraestructura , Microscopía por Crioelectrón , Chaperonina 60/ultraestructura , Chaperoninas/química , Conformación Proteica , Pliegue de Proteína , Subunidades de Proteína/química
20.
J Biol Chem ; 294(16): 6506-6521, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30808709

RESUMEN

Ether-a-go-go family (EAG) channels play a major role in many physiological processes in humans, including cardiac repolarization and cell proliferation. Cryo-EM structures of two of them, KV10.1 and human ether-a-go-go-related gene (hERG or KV11.1), have revealed an original nondomain-swapped structure, suggesting that the mechanism of voltage-dependent gating of these two channels is quite different from the classical mechanical-lever model. Molecular aspects of hERG voltage-gating have been extensively studied, indicating that the S4-S5 linker (S4-S5L) acts as a ligand binding to the S6 gate (S6 C-terminal part, S6T) and stabilizes it in a closed state. Moreover, the N-terminal extremity of the channel, called N-Cap, has been suggested to interact with S4-S5L to modulate channel voltage-dependent gating, as N-Cap deletion drastically accelerates hERG channel deactivation. In this study, using COS-7 cells, site-directed mutagenesis, electrophysiological measurements, and immunofluorescence confocal microscopy, we addressed whether these two major mechanisms of voltage-dependent gating are conserved in KV10.2 channels. Using cysteine bridges and S4-S5L-mimicking peptides, we show that the ligand/receptor model is conserved in KV10.2, suggesting that this model is a hallmark of EAG channels. Truncation of the N-Cap domain, Per-Arnt-Sim (PAS) domain, or both in KV10.2 abolished the current and altered channel trafficking to the membrane, unlike for the hERG channel in which N-Cap and PAS domain truncations mainly affected channel deactivation. Our results suggest that EAG channels function via a conserved ligand/receptor model of voltage gating, but that the N-Cap and PAS domains have different roles in these channels.


Asunto(s)
Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go , Activación del Canal Iónico , Modelos Moleculares , Animales , Células COS , Chlorocebus aethiops , Canal de Potasio ERG1/química , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Péptidos/química , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA