Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 213
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 29: 493-525, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21219178

RESUMEN

Celiac disease (CD) is a gluten-sensitive enteropathy that develops in genetically susceptible individuals by exposure to cereal gluten proteins. This review integrates insights from immunological studies with results of recent genetic genome-wide association studies into a disease model. Genetic data, among others, suggest that viral infections are implicated and that natural killer effector pathways are important in the pathogenesis of CD, but most prominently these data converge with existing immunological findings that CD is primarily a T cell-mediated immune disorder in which CD4(+) T cells that recognize gluten peptides in the context of major histocompatibility class II molecules play a central role. Comparison of genetic pathways as well as genetic susceptibility loci between CD and other autoimmune and inflammatory disorders reveals that CD bears stronger resemblance to T cell-mediated organ-specific autoimmune than to inflammatory diseases. Finally, we present evidence suggesting that the high prevalence of CD in modern societies may be the by-product of past selection for increased immune responses to combat infections in populations in which agriculture and cereals were introduced early on in the post-Neolithic period.


Asunto(s)
Enfermedad Celíaca/genética , Enfermedad Celíaca/inmunología , Animales , Enfermedad Celíaca/epidemiología , Enfermedad Celíaca/fisiopatología , Predisposición Genética a la Enfermedad , Glútenes/inmunología , Humanos , Factores de Riesgo
2.
Gastroenterology ; 167(1): 4-22, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38670280

RESUMEN

Celiac disease (CeD) is a gluten-induced enteropathy that develops in genetically susceptible individuals upon consumption of cereal gluten proteins. It is a unique and complex immune disorder to study as the driving antigen is known and the tissue targeted by the immune reaction can be interrogated. This review integrates findings gained from genetic, biochemical, and immunologic studies, which together have revealed mechanisms of gluten peptide modification and HLA binding, thereby enabling a maladapted anti-gluten immune response. Observations in human samples combined with experimental mouse models have revealed that the gluten-induced immune response involves CD4+ T cells, cytotoxic CD8+ T cells, and B cells; their cross-talks are critical for the tissue-damaging response. The emergence of high-throughput technologies is increasing our understanding of the phenotype, location, and presumably function of the gluten-specific cells, which are all required to identify novel therapeutic targets and strategies for CeD.


Asunto(s)
Enfermedad Celíaca , Predisposición Genética a la Enfermedad , Glútenes , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/genética , Humanos , Glútenes/inmunología , Glútenes/efectos adversos , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología
3.
Gastroenterology ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467384

RESUMEN

BACKGROUND & AIMS: Histologic evaluation of gut biopsies is a cornerstone for diagnosis and management of celiac disease (CeD). Despite its wide use, the method depends on proper biopsy orientation, and it suffers from interobserver variability. Biopsy proteome measurement reporting on the tissue state can be obtained by mass spectrometry analysis of formalin-fixed paraffin-embedded tissue. Here we aimed to transform biopsy proteome data into numerical scores that give observer-independent measures of mucosal remodeling in CeD. METHODS: A pipeline using glass-mounted formalin-fixed paraffin-embedded sections for mass spectrometry-based proteome analysis was established. Proteome data were converted to numerical scores using 2 complementary approaches: a rank-based enrichment score and a score based on machine learning using logistic regression. The 2 scoring approaches were compared with each other and with histology analyzing 18 patients with CeD with biopsies collected before and after treatment with a gluten-free diet as well as biopsies from patients with CeD with varying degree of remission (n = 22). Biopsies from individuals without CeD (n = 32) were also analyzed. RESULTS: The method yielded reliable proteome scoring of both unstained and H&E-stained glass-mounted sections. The scores of the 2 approaches were highly correlated, reflecting that both approaches pick up proteome changes in the same biological pathways. The proteome scores correlated with villus height-to-crypt depth ratio. Thus, the method is able to score biopsies with poor orientation. CONCLUSIONS: Biopsy proteome scores give reliable observer and orientation-independent measures of mucosal remodeling in CeD. The proteomic method can readily be implemented by nonexpert laboratories in parallel to histology assessment and easily scaled for clinical trial settings.

4.
Gastroenterology ; 167(2): 250-263, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38552723

RESUMEN

BACKGROUND & AIMS: The treatment of celiac disease (CeD) with gluten-free diet (GFD) normalizes gut inflammation and disease-specific antibodies. CeD patients have HLA-restricted, gluten-specific T cells persisting in the blood and gut even after decades of GFD, which are reactivated and disease driving upon gluten exposure. Our aim was to examine the transition of activated gluten-specific T cells into a pool of persisting memory T cells concurrent with normalization of clinically relevant biomarkers during the first year of treatment. METHODS: We followed 17 CeD patients during their initial GFD year, leading to disease remission. We assessed activation and frequency of gluten-specific CD4+ blood and gut T cells with HLA-DQ2.5:gluten tetramers and flow cytometry, disease-specific serology, histology, and symptom scores. We assessed gluten-specific blood T cells within the first 3 weeks of GFD in 6 patients and serology in an additional 9 patients. RESULTS: Gluten-specific CD4+ T cells peaked in blood at day 14 while up-regulating Bcl-2 and down-regulating Ki-67 and then decreased in frequency within 10 weeks of GFD. CD38, ICOS, HLA-DR, and Ki-67 decreased in gluten-specific cells within 3 days. PD-1, CD39, and OX40 expression persisted even after 12 months. IgA-transglutaminase 2 decreased significantly within 4 weeks. CONCLUSIONS: GFD induces rapid changes in the phenotype and number of gluten-specific CD4+ blood T cells, including a peak of nonproliferating, nonapoptotic cells at day 14. Subsequent alterations in T-cell phenotype associate with the quiescent but chronic nature of treated CeD. The rapid changes affecting gluten-specific T cells and disease-specific antibodies offer opportunities for clinical trials aiming at developing nondietary treatments for patients with newly diagnosed CeD.


Asunto(s)
Linfocitos T CD4-Positivos , Enfermedad Celíaca , Dieta Sin Gluten , Glútenes , Fenotipo , Proteína Glutamina Gamma Glutamiltransferasa 2 , Humanos , Enfermedad Celíaca/dietoterapia , Enfermedad Celíaca/inmunología , Glútenes/inmunología , Glútenes/administración & dosificación , Masculino , Femenino , Adulto , Persona de Mediana Edad , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Antígenos HLA-DQ/inmunología , Proteínas de Unión al GTP/inmunología , Proteínas de Unión al GTP/metabolismo , Activación de Linfocitos , Transglutaminasas/inmunología , Biomarcadores/sangre , Biomarcadores/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Factores de Tiempo , Adulto Joven , Resultado del Tratamiento , Mucosa Intestinal/inmunología , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo
5.
Gut ; 73(5): 844-853, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38378252

RESUMEN

Serum antibodies to the autoantigen transglutaminase 2 (TG2) are increasingly harnessed to diagnose coeliac disease. Diagnostic guidelines for children give recommendation for a no-biopsy-based diagnosis through detection of high amounts of IgA anti-TG2 antibodies in serum with confirmation of positivity in a separate blood sample by characteristic autoantibody-staining of tissue. While measurement of IgA anti-TG2 also is important in the diagnostic workup of adults, the adult guidelines still mandate examination of gut biopsies. This requirement might well change in the future, as might the necessity for confirming autoantibody positivity by tissue staining. The key role of autoantibody serology for diagnosis of coeliac disease is paradoxical. Coeliac disease was considered, and still can be considered, a food intolerance disorder where autoantibodies at face value are out of place. The immunological mechanisms underlying the formation of autoantibodies in response to gluten exposure have been dissected. This review presents the current insights demonstrating that the autoantibodies in coeliac disease are intimately integrated in the maladapted immune response to gluten.


Asunto(s)
Enfermedad Celíaca , Hipersensibilidad a los Alimentos , Adulto , Niño , Humanos , Enfermedad Celíaca/patología , Transglutaminasas , Autoanticuerpos , Glútenes/efectos adversos , Inmunoglobulina A
6.
Artículo en Inglés | MEDLINE | ID: mdl-38987013

RESUMEN

BACKGROUND & AIMS: This study aimed to determine the total prevalence of celiac disease (CeD), including undiagnosed cases, in a population-based study of adults screened for CeD. METHODS: The study utilized the fourth Trøndelag Health Study (HUNT4), conducted in 2017-2019, where 56,042 adult (aged >20 years) residents of Nord-Trøndelag County, Norway, participated. Serum samples from 54,505 participants were analysed for anti-transglutaminase 2 immunoglobulin A and G. Seropositive individuals were invited for a clinical assessment, including upper endoscopy with duodenal biopsies. Previously diagnosed and seronegative CeD cases were identified through linkage to hospital records and the Norwegian Patient Registry. RESULTS: The rate of CeD seropositivity was 2.0% (1107/54,505). Out of these, 724 individuals attended the clinical assessment. Additionally, the hospital records and registry identified individuals with a known CeD diagnosis, that were seronegative or without serology in HUNT4 or seropositive in HUNT4 but did not participate in the clinical assessment. In total, the study confirmed a new CeD diagnosis after participation in HUNT4 in 470 individuals and a known CeD diagnosis before participation in HUNT4 in 383 individuals. The total biopsy-confirmed prevalence of CeD was 1.5% (853/56,042), and the ratio of new, previously undiagnosed CeD cases (after HUNT4) to known, previously diagnosed CeD cases (before HUNT4) was 1.2:1 (470/383). CONCLUSION: The total prevalence of CeD in this population-based study of adults in Norway was high and many individuals were previously undiagnosed. Detection of CeD should be improved, as early diagnosis is crucial for effective management and prevention of complications.

7.
Genome Res ; 31(12): 2209-2224, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34815307

RESUMEN

The process of recombination between variable (V), diversity (D), and joining (J) immunoglobulin (Ig) gene segments determines an individual's naive Ig repertoire and, consequently, (auto)antigen recognition. VDJ recombination follows probabilistic rules that can be modeled statistically. So far, it remains unknown whether VDJ recombination rules differ between individuals. If these rules differed, identical (auto)antigen-specific Ig sequences would be generated with individual-specific probabilities, signifying that the available Ig sequence space is individual specific. We devised a sensitivity-tested distance measure that enables inter-individual comparison of VDJ recombination models. We discovered, accounting for several sources of noise as well as allelic variation in Ig sequencing data, that not only unrelated individuals but also human monozygotic twins and even inbred mice possess statistically distinguishable immunoglobulin recombination models. This suggests that, in addition to genetic, there is also nongenetic modulation of VDJ recombination. We demonstrate that population-wide individualized VDJ recombination can result in orders of magnitude of difference in the probability to generate (auto)antigen-specific Ig sequences. Our findings have implications for immune receptor-based individualized medicine approaches relevant to vaccination, infection, and autoimmunity.

8.
J Autoimmun ; 146: 103241, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754235

RESUMEN

Many antibody responses induced by infection, vaccination or autoimmunity show signs of convergence across individuals with epitope-dependent selection of particular variable region gene segments and complementarity determining region 3 properties. However, not much is known about the relationship between antigen-specific effector cells and antigen-specific precursors present in the naïve B-cell repertoire. Here, we sought to address this relationship in the context of celiac disease, where there is a stereotyped autoantibody response against the enzyme transglutaminase 2 (TG2). By generating TG2-specific monoclonal antibodies from both duodenal plasma cells and circulating naïve B cells, we demonstrate a discord between the naïve TG2-specific repertoire and the cells that are selected for autoantibody production. Hence, the naïve repertoire does not fully reflect the epitope preference and gene usage observed for memory B cells and plasma cells. Instead, distinct naïve B cells that target particular TG2 epitopes appear to be selectively activated at the expense of TG2-binding B cells targeting other epitopes.


Asunto(s)
Autoanticuerpos , Linfocitos B , Enfermedad Celíaca , Epítopos de Linfocito B , Proteínas de Unión al GTP , Activación de Linfocitos , Proteína Glutamina Gamma Glutamiltransferasa 2 , Transglutaminasas , Enfermedad Celíaca/inmunología , Humanos , Autoanticuerpos/inmunología , Transglutaminasas/inmunología , Epítopos de Linfocito B/inmunología , Proteínas de Unión al GTP/inmunología , Activación de Linfocitos/inmunología , Linfocitos B/inmunología , Células Plasmáticas/inmunología , Células Plasmáticas/metabolismo , Femenino , Anticuerpos Monoclonales/inmunología , Epítopos/inmunología , Masculino , Adulto , Duodeno/inmunología , Duodeno/patología
9.
J Biol Chem ; 298(3): 101619, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065967

RESUMEN

Celiac disease is a T cell-mediated chronic inflammatory condition often characterized by human leukocyte antigen (HLA)-DQ2.5 molecules presenting gluten epitopes derived from wheat, barley, and rye. Although some T cells exhibit cross-reactivity toward distinct gluten epitopes, the structural basis underpinning such cross-reactivity is unclear. Here, we investigated the T-cell receptor specificity and cross-reactivity of two immunodominant wheat gluten epitopes, DQ2.5-glia-α1a (PFPQPELPY) and DQ2.5-glia-ω1 (PFPQPEQPF). We show by surface plasmon resonance that a T-cell receptor alpha variable (TRAV) 4+-T-cell receptor beta variable (TRBV) 29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1 with similar affinity, whereas a TRAV4- (TRAV9-2+) TCR recognized HLA-DQ2.5-glia-ω1 only. We further determined the crystal structures of the TRAV4+-TRBV29-1+ TCR bound to HLA-DQ2.5-glia-α1a and HLA-DQ2.5-glia-ω1, as well as the structure of an epitope-specific TRAV9-2+-TRBV7-3+ TCR-HLA-DQ2.5-glia-ω1 complex. We found that position 7 (p7) of the DQ2.5-glia-α1a and DQ2.5-glia-ω1 epitopes made very limited contacts with the TRAV4+ TCR, thereby explaining the TCR cross-reactivity across these two epitopes. In contrast, within the TRAV9-2+ TCR-HLA-DQ2.5-glia-ω1 ternary complex, the p7-Gln was situated in an electrostatic pocket formed by the hypervariable CDR3ß loop of the TCR and Arg70ß from HLA-DQ2.5, a polar network which would not be supported by the p7-Leu residue of DQ2.5-glia-α1a. In conclusion, we provide additional insights into the molecular determinants of TCR specificity and cross-reactivity to two closely-related epitopes in celiac disease.


Asunto(s)
Enfermedad Celíaca , Glútenes , Antígenos HLA-DQ , Linfocitos T CD4-Positivos/inmunología , Enfermedad Celíaca/inmunología , Regiones Determinantes de Complementariedad/metabolismo , Reacciones Cruzadas/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Glútenes/inmunología , Antígenos HLA-DQ/química , Antígenos HLA-DQ/inmunología , Humanos , Epítopos Inmunodominantes/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología
10.
Eur J Immunol ; 52(9): 1474-1481, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35715890

RESUMEN

The adaptive immune response of celiac disease (CeD) involves presentation of gluten peptides to CD4+ T cells by transglutaminase 2 (TG2) specific B cells. This B-cell/T-cell crosstalk is facilitated by involvement of TG2:gluten peptide complexes that act principally in the form of enzyme-substrate intermediates. Here, we have addressed how gluten peptide affinity and complex stability in the presence of secondary substrates affect the uptake of TG2:gluten peptide complexes by TG2-specific B cells and the activation of gluten-specific T cells. We studied affinity of various gluten peptides for TG2 by biochemical assay, and monitored uptake of gluten peptides by TG2-specific B cells by flow cytometry. Crosstalk between TG2-specific B cells and gluten-specific T cells was assayed with transfectants expressing antigen receptors derived from CeD patients. We found that gluten peptides with high TG2 affinity showed better uptake by TG2-specific B cells. Uptake by B cells, and subsequent activation of T cells, was negatively affected by polyamines acting as secondary TG2 substrates. These results show that affinity between gluten peptide and TG2 governs the selection of T-cell epitopes via enhanced uptake of TG2:gluten complexes by TG2-specific B cells, and that exogenous polyamines can influence the CeD immune responses by disrupting TG2:gluten complexes.


Asunto(s)
Enfermedad Celíaca , Glútenes , Proteínas de Unión al GTP/metabolismo , Humanos , Péptidos/metabolismo , Poliaminas , Proteína Glutamina Gamma Glutamiltransferasa 2 , Linfocitos T , Transglutaminasas
11.
Eur J Immunol ; 52(4): 550-565, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35094395

RESUMEN

Clonally related B cells infiltrate the brain, meninges, and cerebrospinal fluid of MS patients, but the mechanisms driving the B-cell response and shaping the immunoglobulin repertoires remain unclear. Here, we used single-cell full-length RNA-seq and BCR reconstruction to simultaneously assess the phenotypes, isotypes, constant region polymorphisms, and the paired heavy- and light-chain repertoires in intrathecal B cells. We detected extensive clonal connections between the memory B cell and antibody-secreting cell (ASC) compartments and observed clonally related cells of different isotypes including IgM/IgG1, IgG1/IgA1, IgG1/IgG2, and IgM/IgA1. There was a strong dominance of the G1m1 allotype constant region polymorphisms in ASCs, but not in memory B cells. Tightly linked to the G1m1 allotype, we found a preferential pairing of the immunoglobulin heavy-chain variable (IGHV)4 gene family with the κ variable (IGKV)1 gene family. The IGHV4-39 gene was most used and showed the highest frequency of pairing with IGKV1-5 and IGKV1(D)-33. These results link IgG constant region polymorphisms to stereotyped B-cell responses in MS and indicate that the intrathecal B-cell response in these patients could be directed against structurally similar epitopes.


Asunto(s)
Esclerosis Múltiple , Linfocitos B , Encéfalo , Humanos , Inmunoglobulina A , Inmunoglobulina G , Esclerosis Múltiple/genética
12.
Proc Natl Acad Sci U S A ; 117(6): 3063-3073, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31974305

RESUMEN

The highly homologous human leukocyte antigen (HLA)-DQ2 molecules, HLA-DQ2.5 and HLA-DQ2.2, are implicated in the pathogenesis of celiac disease (CeD) by presenting gluten peptides to CD4+ T cells. However, while HLA-DQ2.5 is strongly associated with disease, HLA-DQ2.2 is not, and the molecular basis underpinning this differential disease association is unresolved. We here provide structural evidence for how the single polymorphic residue (HLA-DQ2.5-Tyr22α and HLA-DQ2.2-Phe22α) accounts for HLA-DQ2.2 additionally requiring gluten epitopes possessing a serine at the P3 position of the peptide. In marked contrast to the biased T cell receptor (TCR) usage associated with HLA-DQ2.5-mediated CeD, we demonstrate with extensive single-cell sequencing that a diverse TCR repertoire enables recognition of the immunodominant HLA-DQ2.2-glut-L1 epitope. The crystal structure of two CeD patient-derived TCR in complex with HLA-DQ2.2 and DQ2.2-glut-L1 (PFSEQEQPV) revealed a docking strategy, and associated interatomic contacts, which was notably distinct from the structures of the TCR:HLA-DQ2.5:gliadin epitope complexes. Accordingly, while the molecular surfaces of the antigen-binding clefts of HLA-DQ2.5 and HLA-DQ2.2 are very similar, differences in the nature of the peptides presented translates to differences in responding T cell repertoires and the nature of engagement of the respective antigen-presenting molecules, which ultimately is associated with differing disease penetrance.


Asunto(s)
Enfermedad Celíaca , Antígenos HLA-DQ , Receptores de Antígenos de Linfocitos T , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/metabolismo , Enfermedad Celíaca/genética , Enfermedad Celíaca/inmunología , Enfermedad Celíaca/metabolismo , Línea Celular , Cristalografía por Rayos X , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/metabolismo , Glútenes/química , Glútenes/inmunología , Glútenes/metabolismo , Antígenos HLA-DQ/química , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/metabolismo , Humanos , Modelos Moleculares , Unión Proteica , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
13.
Eur J Immunol ; 51(4): 1002-1005, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368209

RESUMEN

We created a TCR transgenic mouse with CD4+ T cells recognizing the immunodominant DQ2.5-glia-ω2 gluten epitope. We show that these cells respond to deamidated gluten feed in vivo and compare them to previously published α2- and γ1-specific mice. These mice may help enlighten key aspects of celiac disease pathogenesis.


Asunto(s)
Glútenes/genética , Antígenos HLA-DQ/genética , Epítopos Inmunodominantes/genética , Receptores de Antígenos de Linfocitos T/genética , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Enfermedad Celíaca/genética , Enfermedad Celíaca/inmunología , Modelos Animales de Enfermedad , Glútenes/inmunología , Antígenos HLA-DQ/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Ratones , Ratones Transgénicos , Receptores de Antígenos de Linfocitos T/inmunología
14.
Eur J Immunol ; 51(6): 1542-1545, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33559929

RESUMEN

We compared the αß T-cell receptor repertoires of CD8+ αß intraepithelial lymphocytes from celiac disease patients and healthy subjects by single-cell sequencing. We demonstrate that the repertoires of untreated celiac disease patients were more polyclonal and more diverse than what was observed in both treated patients and healthy subjects.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Enfermedad Celíaca/inmunología , Epitelio/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Biodiversidad , Células Cultivadas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de la Célula Individual , Transcriptoma
15.
Scand J Immunol ; 95(1): e13120, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34796982

RESUMEN

This mini-review describes observations of the 1990ies with culturing of gluten-specific and astrovirus-specific CD4+ T cells from duodenal biopsies from subjects who presumably had a long time between the exposure to gluten or astrovirus antigens and the sampling of the biopsy. In these studies, it was also observed that antigen-specific CD4+ T cells migrated out of the gut biopsies during overnight culture. The findings are suggestive of memory T cells in tissue which are resident, but which also can be mobilised on antigen stimulation. Of note, these findings were made years before the term tissue-resident memory T cells was invoked. Since that time, many observations have accumulated on these gut T cells, particularly the gluten-specific T cells, and we have insight into the turnover of CD4+ T cells in the gut lamina propria. These data make it evident that human antigen-specific CD4+ T cells that can be cultured from gut biopsies indeed are bone fide tissue-resident memory T cells.


Asunto(s)
Infecciones por Astroviridae/inmunología , Enfermedad Celíaca/inmunología , Mucosa Intestinal/inmunología , Mamastrovirus/fisiología , Células T de Memoria/inmunología , Animales , Autoantígenos/inmunología , Glútenes/inmunología , Humanos , Memoria Inmunológica , Especificidad de Órganos
16.
Nucleic Acids Res ; 48(10): 5499-5510, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32365177

RESUMEN

Germline variations in immunoglobulin genes influence the repertoire of B cell receptors and antibodies, and such polymorphisms may impact disease susceptibility. However, the knowledge of the genomic variation of the immunoglobulin loci is scarce. Here, we report 25 potential novel germline IGHV alleles as inferred from rearranged naïve B cell cDNA repertoires of 98 individuals. Thirteen novel alleles were selected for validation, out of which ten were successfully confirmed by targeted amplification and Sanger sequencing of non-B cell DNA. Moreover, we detected a high degree of variability upstream of the V-REGION in the 5'UTR, L-PART1 and L-PART2 sequences, and found that identical V-REGION alleles can differ in upstream sequences. Thus, we have identified a large genetic variation not only in the V-REGION but also in the upstream sequences of IGHV genes. Our findings provide a new perspective for annotating immunoglobulin repertoire sequencing data.


Asunto(s)
Genes de las Cadenas Pesadas de las Inmunoglobulinas , Región Variable de Inmunoglobulina/genética , Polimorfismo Genético , Regiones no Traducidas 5' , Alelos , Codón Iniciador , Humanos , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , TATA Box
18.
Proc Natl Acad Sci U S A ; 116(30): 15134-15139, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31285344

RESUMEN

B cells play important roles in autoimmune diseases through autoantibody production, cytokine secretion, or antigen presentation to T cells. In most cases, the contribution of B cells as antigen-presenting cells is not well understood. We have studied the autoantibody response against the enzyme transglutaminase 2 (TG2) in celiac disease patients by generating recombinant antibodies from single gut plasma cells reactive with discrete antigen domains and by undertaking proteomic analysis of anti-TG2 serum antibodies. The majority of the cells recognized epitopes in the N-terminal domain of TG2. Antibodies recognizing C-terminal epitopes interfered with TG2 cross-linking activity, and B cells specific for C-terminal epitopes were inefficient at taking up TG2-gluten complexes for presentation to gluten-specific T cells. The bias toward N-terminal epitopes hence reflects efficient T-B collaboration. Production of antibodies against N-terminal epitopes coincided with clinical onset of disease, suggesting that TG2-reactive B cells with certain epitope specificities could be the main antigen-presenting cells for pathogenic, gluten-specific T cells. The link between B cell epitopes, antigen presentation, and disease onset provides insight into the pathogenic mechanisms of a T cell-mediated autoimmune condition.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Linfocitos B/inmunología , Enfermedad Celíaca/inmunología , Epítopos de Linfocito B/inmunología , Proteínas de Unión al GTP/inmunología , Linfocitos T/inmunología , Transglutaminasas/inmunología , Edad de Inicio , Células Presentadoras de Antígenos/patología , Autoanticuerpos/biosíntesis , Autoanticuerpos/genética , Autoantígenos/genética , Autoantígenos/inmunología , Linfocitos B/patología , Enfermedad Celíaca/genética , Enfermedad Celíaca/patología , Duodeno/inmunología , Duodeno/patología , Epítopos de Linfocito B/química , Epítopos de Linfocito B/genética , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/genética , Glútenes/química , Glútenes/inmunología , Humanos , Sueros Inmunes/química , Cadenas Ligeras de Inmunoglobulina/biosíntesis , Cadenas Ligeras de Inmunoglobulina/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteína Glutamina Gamma Glutamiltransferasa 2 , Linfocitos T/patología , Transglutaminasas/química , Transglutaminasas/genética
19.
Genes Immun ; 22(4): 205-217, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34175903

RESUMEN

Immunoglobulins (Ig) play an important role in the immune system both when expressed as antigen receptors on the cell surface of B cells and as antibodies secreted into extracellular fluids. The advent of high-throughput sequencing methods has enabled the investigation of human Ig repertoires at unprecedented depth. This has led to the discovery of many previously unreported germline Ig alleles. Moreover, it is becoming clear that convergent and stereotypic antibody responses are common where different individuals recognise defined antigenic epitopes with the use of the same Ig V genes. Thus, germline V gene variation is increasingly being linked to the differential capacity of generating an effective immune response, which might lead to varying disease susceptibility. Here, we review recent evidence of how germline variation in Ig genes impacts the Ig repertoire and its subsequent effects on the adaptive immune response in vaccination, infection, and autoimmunity.


Asunto(s)
Genes de Inmunoglobulinas , Inmunoglobulinas , Alelos , Células Germinativas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunoglobulinas/genética
20.
Eur J Immunol ; 50(2): 256-269, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31628754

RESUMEN

Celiac disease (CeD) is driven by CD4+  T-cell responses to dietary gluten proteins of wheat, barley, and rye when deamidated gluten epitopes are presented by certain disease-associated HLA-DQ allotypes. About 90% of the CeD patients express HLA-DQ2.5. In such patients, five gluten epitopes dominate the anti-gluten T-cell response; two epitopes unique to wheat, two epitopes present in wheat, barley, and rye and one epitope unique to barley. Despite presence of barley in commonly consumed food and beverages and hence being a prominent source of gluten, knowledge about T-cell responses elicited by barley in CeD is scarce. Therefore, in this study, we explored T-cell response toward the barley unique epitope DQ2.5-hor-3 (PIPEQPQPY) by undertaking HLA-DQ:gluten peptide tetramer staining, single-cell T-cell receptor (TCR) αß sequencing, T-cell cloning, and T-cell proliferation studies. We demonstrate that majority of the CeD patients generate T-cell response to DQ2.5-hor-3, and this response is characterized by clonal expansion, preferential TCR V-gene usage and public TCR features thus echoing findings previously made for wheat gluten epitopes. The knowledge that biased and public TCRs underpin the T-cell response to all the immunodominant gluten epitopes in CeD suggests that such T cells are promising diagnostic and therapeutic targets.


Asunto(s)
Enfermedad Celíaca/inmunología , Hipersensibilidad a los Alimentos/inmunología , Glútenes/inmunología , Hordeum/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Antígenos HLA-DQ/inmunología , Humanos , Epítopos Inmunodominantes/inmunología , Activación de Linfocitos/inmunología , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA