RESUMEN
This study evaluated the potential effects of long-term land use and climate change on the quality of surface runoff and the health risks associated with it. The land use change projection 2030 was derived from the main changes in land use from 2009 to 2019, and rainfall data was obtained from the Long Ashton Research Station Weather Generator (LARS-WG) model. The Long-Term Hydrological Impact Assessment (L-THIA) model was then utilized to calculate the rate of runoff heavy metal (HM) pollutant loading from the urban catchment. It was found that areas with heavy development posed a significantly greater public health risk associated with runoff, with higher risks observed in high-development and traffic areas compared to industrial, residential, and commercial areas. Additionally, exposure to Lead (Pb), Mercury (Hg), and Arsenic (As) was found to contribute significantly to overall non-carcinogenic health risks for possible consumers of runoff. Carcinogenic risk values of As, Cadmium (Cd), and Pb were also observed to increase, particularly in high-development and traffic areas, by 2030. This investigation offers important insight into the health risks posed by metals present in surface runoff in urban catchment areas under different land use and climate change scenarios.
Asunto(s)
Exposición a Riesgos Ambientales , Metales Pesados , Contaminantes Químicos del Agua , Metales Pesados/análisis , Humanos , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Cambio Climático , Ciudades , LluviaRESUMEN
Growth in urbanization has led to increased impervious surfaces, exacerbating flood risks and water quality degradation. This study investigated the impact of land use change and Low-Impact Development (LID) systems on urban runoff quality and quantity in the second region of Tehran. Pioneering an innovative approach, the integration of the Land Change Modeler (LCM) with the Stormwater Management Model (SWMM) signifies a paradigm shift in urban water management. Combined with other hydrological models, this new approach provides a comprehensive method for assessing the future effectiveness of LID practices. The Event Mean Concentration Method (EMC) was used in this study to measure Total Suspended Solids (TSS), Chemical Oxygen Demand (COD), Total Phosphorus (TP), and Zinc (Zn) in urban runoff from five land uses. Results pinpointed transportation land uses as the primary source of pollutants. Using LCM, the study forecasted a surge in urban runoff pollutants by 2030, particularly in the Northwest area of the region due to anticipated land use shifts towards commercial and residential land uses. Model results showed an 11 % increase in TSS over a decade, highlighting the importance of land use change in runoff quality. The study used three types of LIDs to reduce contaminants in dense urban areas. Assessing the impact of LID scenarios on runoff pollutants using SWMM revealed that the bio-retention cell had the best performance, reducing TSS by 20.92 %, and the vegetative swale had the worst performance, reducing TSS by 8.43 %. The study also concluded that combining LIDs would be more effective than using them separately. The results of this study suggest that LID systems can be an effective way to reduce urban runoff pollutants and improve water quality in the second region of Tehran. However, more research is needed to optimize the design and placement of LID systems in different urban areas.