RESUMEN
Intestinal IL-17-producing T helper (Th17) cells are dependent on adherent microbes in the gut for their development. However, how microbial adherence to intestinal epithelial cells (IECs) promotes Th17 cell differentiation remains enigmatic. Here, we found that Th17 cell-inducing gut bacteria generated an unfolded protein response (UPR) in IECs. Furthermore, subtilase cytotoxin expression or genetic removal of X-box binding protein 1 (Xbp1) in IECs caused a UPR and increased Th17 cells, even in antibiotic-treated or germ-free conditions. Mechanistically, UPR activation in IECs enhanced their production of both reactive oxygen species (ROS) and purine metabolites. Treating mice with N-acetyl-cysteine or allopurinol to reduce ROS production and xanthine, respectively, decreased Th17 cells that were associated with an elevated UPR. Th17-related genes also correlated with ER stress and the UPR in humans with inflammatory bowel disease. Overall, we identify a mechanism of intestinal Th17 cell differentiation that emerges from an IEC-associated UPR.
Asunto(s)
Estrés del Retículo Endoplásmico , Mucosa Intestinal , Células Th17 , Estrés del Retículo Endoplásmico/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Células Th17/citología , Células Th17/metabolismo , Diferenciación Celular , Humanos , Animales , Ratones , Ratones Transgénicos , Antibacterianos/farmacologíaRESUMEN
Hyperlipidaemia is a major risk factor of atherosclerotic cardiovascular disease (ASCVD). Risk of cardiovascular events depends on cumulative lifetime exposure to low-density lipoprotein cholesterol (LDL-C) and, independently, on the time course of exposure to LDL-C, with early exposure being associated with a higher risk1. Furthermore, LDL-C fluctuations are associated with ASCVD outcomes2-4. However, the precise mechanisms behind this increased ASCVD risk are not understood. Here we find that early intermittent feeding of mice on a high-cholesterol Western-type diet (WD) accelerates atherosclerosis compared with late continuous exposure to the WD, despite similar cumulative circulating LDL-C levels. We find that early intermittent hyperlipidaemia alters the number and homeostatic phenotype of resident-like arterial macrophages. Macrophage genes with altered expression are enriched for genes linked to human ASCVD in genome-wide association studies. We show that LYVE1+ resident macrophages are atheroprotective, and identify biological pathways related to actin filament organization, of which alteration accelerates atherosclerosis. Using the Young Finns Study, we show that exposure to cholesterol early in life is significantly associated with the incidence and size of carotid atherosclerotic plaques in mid-adulthood. In summary, our results identify early intermittent exposure to cholesterol as a strong determinant of accelerated atherosclerosis, highlighting the importance of optimal control of hyperlipidaemia early in life, and providing insights into the underlying biological mechanisms. This knowledge will be essential to designing effective therapeutic strategies to combat ASCVD.
Asunto(s)
Aterosclerosis , Dieta Occidental , Hiperlipidemias , Macrófagos , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven , Aterosclerosis/epidemiología , Aterosclerosis/etiología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , LDL-Colesterol/sangre , LDL-Colesterol/metabolismo , Dieta Occidental/efectos adversos , Dieta Occidental/estadística & datos numéricos , Finlandia/epidemiología , Estudio de Asociación del Genoma Completo , Hiperlipidemias/complicaciones , Hiperlipidemias/epidemiología , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Hiperlipidemias/patología , Incidencia , Macrófagos/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Fenotipo , Placa Aterosclerótica/epidemiología , Placa Aterosclerótica/etiología , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patología , Factores de TiempoRESUMEN
BACKGROUND: Inflammation is characterized by a metabolic switch promoting glycolysis and lactate production. Hexokinases (HK) catalyze the first reaction of glycolysis and inhibition of epithelial HK2 protected from colitis in mice. HK2 expression has been described as elevated in patients with intestinal inflammation; however, there is conflicting data from few cohorts especially with severely inflamed individuals; thus, systematic studies linking disease activity with HK2 levels are needed. METHODS: We examined the relationship between HK2 expression and inflammation severity using bulk transcriptome data derived from the mucosa of thoroughly phenotyped inflammatory bowel disease (IBD) patients of two independent cohorts including both subtypes Crohn's disease (CD) and ulcerative colitis (UC). Publicly available single-cell RNA sequencing data were analyzed, and immunofluorescence staining on colonic biopsies of unrelated patients with intestinal inflammation was performed to confirm the RNA-based findings on cellular and protein level. RESULTS: HK2 expression gradually increased from mild to intermediate inflammation, yet strongly declined at high inflammation scores. Expression of epithelial marker genes also declined at high inflammation scores, whereas that of candidate immune marker genes increased, indicating a cellular remodeling of the mucosa during inflammation with an infiltration of HK2-negative immune cells and a loss of terminal differentiated epithelial cells in the apical epithelium-the main site of HK2 expression. Normalizing for the enterocyte loss clearly identified epithelial HK2 expression as gradually increasing with disease activity and remaining elevated at high inflammation scores. HK2 protein expression was mostly restricted to brush border enterocytes, and these cells along with HK2 levels vanished with increasing disease severity. CONCLUSIONS: Our findings clearly define dysregulated epithelial HK2 expression as an indicator of disease activity in intestinal inflammation and suggest targeted HK2-inhibition as a potential therapeutic avenue.
Asunto(s)
Enterocitos , Hexoquinasa , Enfermedades Inflamatorias del Intestino , Índice de Severidad de la Enfermedad , Humanos , Enterocitos/patología , Enterocitos/enzimología , Hexoquinasa/genética , Hexoquinasa/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Femenino , Masculino , Adulto , Mucosa Intestinal/patología , Mucosa Intestinal/enzimología , Persona de Mediana Edad , Inflamación/patologíaRESUMEN
Alterations in enteric microbiota are associated with several highly prevalent immune-mediated and metabolic diseases1-3, and experiments involving faecal transplants have indicated that such alterations have a causal role in at least some such conditions4-6. The postnatal period is particularly critical for the development of microbiota composition, host-microbe interactions and immune homeostasis7-9. However, the underlying molecular mechanisms of this neonatal priming period have not been defined. Here we report the identification of a host-mediated regulatory circuit of bacterial colonization that acts solely during the early neonatal period but influences life-long microbiota composition. We demonstrate age-dependent expression of the flagellin receptor Toll-like receptor 5 (TLR5) in the gut epithelium of neonate mice. Using competitive colonization experiments, we demonstrate that epithelial TLR5-mediated REG3γ production is critical for the counter-selection of colonizing flagellated bacteria. Comparative microbiota transfer experiments in neonate and adult wild-type and Tlr5-deficient germ-free mice reveal that neonatal TLR5 expression strongly influences the composition of the microbiota throughout life. Thus, the beneficial microbiota in the adult host is shaped during early infancy. This might explain why environmental factors that disturb the establishment of the microbiota during early life can affect immune homeostasis and health in adulthood.
Asunto(s)
Envejecimiento/inmunología , Animales Recién Nacidos/inmunología , Microbioma Gastrointestinal/inmunología , Receptor Toll-Like 5/inmunología , Envejecimiento/genética , Animales , Animales Recién Nacidos/genética , Cruzamientos Genéticos , Ambiente , Femenino , Flagelina/inmunología , Flagelina/metabolismo , Microbioma Gastrointestinal/genética , Homeostasis , Interacciones Microbiota-Huesped , Vivienda para Animales , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Embarazo , Receptor Toll-Like 5/genéticaRESUMEN
In Fig. 1d of this Letter, the third group along should have been labelled 'WT' rather than 'Tlr5'. This has been corrected online.
RESUMEN
BACKGROUND & AIMS: Crohn's disease (CD) globally emerges with Westernization of lifestyle and nutritional habits. However, a specific dietary constituent that comprehensively evokes gut inflammation in human inflammatory bowel diseases remains elusive. We aimed to delineate how increased intake of polyunsaturated fatty acids (PUFAs) in a Western diet, known to impart risk for developing CD, affects gut inflammation and disease course. We hypothesized that the unfolded protein response and antioxidative activity of glutathione peroxidase 4 (GPX4), which are compromised in human CD epithelium, compensates for metabolic perturbation evoked by dietary PUFAs. METHODS: We phenotyped and mechanistically dissected enteritis evoked by a PUFA-enriched Western diet in 2 mouse models exhibiting endoplasmic reticulum (ER) stress consequent to intestinal epithelial cell (IEC)-specific deletion of X-box binding protein 1 (Xbp1) or Gpx4. We translated the findings to human CD epithelial organoids and correlated PUFA intake, as estimated by a dietary questionnaire or stool metabolomics, with clinical disease course in 2 independent CD cohorts. RESULTS: PUFA excess in a Western diet potently induced ER stress, driving enteritis in Xbp1-/-IEC and Gpx4+/-IEC mice. ω-3 and ω-6 PUFAs activated the epithelial endoplasmic reticulum sensor inositol-requiring enzyme 1α (IRE1α) by toll-like receptor 2 (TLR2) sensing of oxidation-specific epitopes. TLR2-controlled IRE1α activity governed PUFA-induced chemokine production and enteritis. In active human CD, ω-3 and ω-6 PUFAs instigated epithelial chemokine expression, and patients displayed a compatible inflammatory stress signature in the serum. Estimated PUFA intake correlated with clinical and biochemical disease activity in a cohort of 160 CD patients, which was similarly demonstrable in an independent metabolomic stool analysis from 199 CD patients. CONCLUSIONS: We provide evidence for the concept of PUFA-induced metabolic gut inflammation which may worsen the course of human CD. Our findings provide a basis for targeted nutritional therapy.
Asunto(s)
Enfermedad de Crohn , Enteritis , Ácidos Grasos Omega-3 , Animales , Enfermedad de Crohn/tratamiento farmacológico , Endorribonucleasas , Enteritis/inducido químicamente , Enteritis/tratamiento farmacológico , Ácidos Grasos Insaturados , Humanos , Inflamación/tratamiento farmacológico , Ratones , Proteínas Serina-Treonina Quinasas , Receptor Toll-Like 2RESUMEN
Over-consumption of high-fat diets (HFDs) is associated with several pathologies. Although the intestine is the organ that comes into direct contact with all diet components, the impact of HFD has mostly been studied in organs that are linked to obesity and obesity related disorders. We used Drosophila as a simple model to disentangle the effects of a HFD on the intestinal structure and physiology from the plethora of other effects caused by this nutritional intervention. Here, we show that a HFD, composed of triglycerides with saturated fatty acids, triggers activation of intestinal stem cells in the Drosophila midgut. This stem cell activation was transient and dependent on the presence of an intestinal microbiota, as it was completely absent in germ free animals. Moreover, major components of the signal transduction pathway have been elucidated. Here, JNK (basket) in enterocytes was necessary to trigger synthesis of the cytokine upd3 in these cells. This ligand in turn activated the JAK/STAT pathway in intestinal stem cells. Chronic subjection to a HFD markedly altered both the microbiota composition and the bacterial load. Although HFD-induced stem cell activity was transient, long-lasting changes to the cellular composition, including a substantial increase in the number of enteroendocrine cells, were observed. Taken together, a HFD enhances stem cell activity in the Drosophila gut and this effect is completely reliant on the indigenous microbiota and also dependent on JNK signaling within intestinal enterocytes.
Asunto(s)
Bacterias/clasificación , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/citología , Animales , Bacterias/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Drosophila , Proteínas de Drosophila/metabolismo , Mucosa Intestinal/efectos de los fármacos , MAP Quinasa Quinasa 4/metabolismo , Modelos Animales , Transducción de Señal/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacosRESUMEN
Nuclear charge radii of ^{55,56}Ni were measured by collinear laser spectroscopy. The obtained information completes the behavior of the charge radii at the shell closure of the doubly magic nucleus ^{56}Ni. The trend of charge radii across the shell closures in calcium and nickel is surprisingly similar despite the fact that the ^{56}Ni core is supposed to be much softer than the ^{48}Ca core. The very low magnetic moment µ(^{55}Ni)=-1.108(20) µ_{N} indicates the impact of M1 excitations between spin-orbit partners across the N,Z=28 shell gaps. Our charge-radii results are compared to ab initio and nuclear density functional theory calculations, showing good agreement within theoretical uncertainties.
RESUMEN
BACKGROUND: Human well-being has been linked to the composition and functional capacity of the intestinal microbiota. As regular exercise is known to improve human health, it is not surprising that exercise was previously described to positively modulate the gut microbiota, too. However, most previous studies mainly focused on either elite athletes or animal models. Thus, we conducted a randomised intervention study that focused on the effects of different types of training (endurance and strength) in previously physically inactive, healthy adults in comparison to controls that did not perform regular exercise. Overall study duration was ten weeks including six weeks of intervention period. In addition to 16S rRNA gene amplicon sequencing of longitudinally sampled faecal material of participants (six time points), detailed body composition measurements and analysis of blood samples (at baseline and after the intervention) were performed to obtain overall physiological changes within the intervention period. Activity tracker devices (wrist-band wearables) provided activity status and sleeping patterns of participants as well as exercise intensity and heart measurements. RESULTS: Different biometric responses between endurance and strength activities were identified, such as a significant increase of lymphocytes and decrease of mean corpuscular haemoglobin concentration (MCHC) only within the strength intervention group. In the endurance group, we observed a significant reduction in hip circumference and an increase in physical working capacity (PWC). Though a large variation of microbiota changes were observed between individuals of the same group, we did not find specific collective alterations in the endurance nor the strength groups, arguing for microbiome variations specific to individuals, and therefore, were not captured in our analysis. CONCLUSIONS: We could show that different types of exercise have distinct but moderate effects on the overall physiology of humans and very distinct microbial changes in the gut. The observed overall changes during the intervention highlight the importance of physical activity on well-being. Future studies should investigate the effect of exercise on a longer timescale, investigate different training intensities and consider high-resolution shotgun metagenomics technology. TRIAL REGISTRATION: DRKS, DRKS00015873 . Registered 12 December 2018; Retrospectively registered.
Asunto(s)
Ejercicio Físico , Microbioma Gastrointestinal , Adulto , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Dieta , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Adulto JovenRESUMEN
The nuclear root-mean-square charge radius of ^{54}Ni was determined with collinear laser spectroscopy to be R(^{54}Ni)=3.737(3) fm. In conjunction with the known radius of the mirror nucleus ^{54}Fe, the difference of the charge radii was extracted as ΔR_{ch}=0.049(4) fm. Based on the correlation between ΔR_{ch} and the slope of the symmetry energy at nuclear saturation density (L), we deduced 21≤L≤88 MeV. The present result is consistent with the L from the binary neutron star merger GW170817, favoring a soft neutron matter EOS, and barely consistent with the PREX-2 result within 1σ error bands. Our result indicates the neutron-skin thickness of ^{48}Ca as 0.15-0.21 fm.
RESUMEN
The first laser spectroscopic determination of the change in the nuclear charge radius for a five-electron system is reported. This is achieved by combining high-accuracy ab initio mass-shift calculations and a high-accuracy measurement of the isotope shift in the 2s^{2}2p ^{2}P_{1/2}â2s^{2}3s ^{2}S_{1/2} ground state transition in boron atoms. Accuracy is increased by orders of magnitude for the stable isotopes ^{10,11}B and the results are used to extract their difference in the mean-square charge radius ⟨r_{c}^{2}⟩^{11}-⟨r_{c}^{2}⟩^{10}=-0.49(12) fm^{2}. The result is qualitatively explained by a possible cluster structure of the boron nuclei and quantitatively used to benchmark new ab initio nuclear structure calculations using the no-core shell model and Green's function Monte Carlo approaches. These results are the foundation for a laser spectroscopic determination of the charge radius of the proton-halo candidate ^{8}B.
RESUMEN
Enteropathogenic Escherichia coli (EPEC) represents a major causative agent of infant diarrhea associated with significant morbidity and mortality in developing countries. Although studied extensively in vitro, the investigation of the host-pathogen interaction in vivo has been hampered by the lack of a suitable small animal model. Using RT-PCR and global transcriptome analysis, high throughput 16S rDNA sequencing as well as immunofluorescence and electron microscopy, we characterize the EPEC-host interaction following oral challenge of newborn mice. Spontaneous colonization of the small intestine and colon of neonate mice that lasted until weaning was observed. Intimate attachment to the epithelial plasma membrane and microcolony formation were visualized only in the presence of a functional bundle forming pili (BFP) and type III secretion system (T3SS). Similarly, a T3SS-dependent EPEC-induced innate immune response, mediated via MyD88, TLR5 and TLR9 led to the induction of a distinct set of genes in infected intestinal epithelial cells. Infection-induced alterations of the microbiota composition remained restricted to the postnatal period. Although EPEC colonized the adult intestine in the absence of a competing microbiota, no microcolonies were observed at the small intestinal epithelium. Here, we introduce the first suitable mouse infection model and describe an age-dependent, virulence factor-dependent attachment of EPEC to enterocytes in vivo.
Asunto(s)
Modelos Animales de Enfermedad , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/microbiología , Interacciones Huésped-Patógeno/fisiología , Animales , Animales Recién Nacidos , Susceptibilidad a Enfermedades/microbiología , Escherichia coli Enteropatógena/metabolismo , Infecciones por Escherichia coli/metabolismo , Fimbrias Bacterianas/ultraestructura , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Secreción Tipo III/metabolismo , Factores de Virulencia/metabolismoRESUMEN
Interactions between the host and its associated microbiota differ spatially and the local cross talk determines organ function and physiology. Animals and their organs are not uniform but contain several functional and cellular compartments and gradients. In the intestinal tract, different parts of the gut carry out different functions, tissue structure varies accordingly, epithelial cells are differentially distributed and gradients exist for several physicochemical parameters such as nutrients, pH, or oxygen. Consequently, the microbiota composition also differs along the length of the gut, but also between lumen and mucosa of the same intestinal segment, and even along the crypt-villus axis in the epithelium. Thus, host-microbiota interactions are highly site-specific and the local cross talk determines intestinal function and physiology. Here we review recent advances in our understanding of site-specific host-microbiota interactions and discuss their functional relevance for host physiology.
Asunto(s)
Susceptibilidad a Enfermedades , Microbioma Gastrointestinal/fisiología , Interacciones Huésped-Patógeno , Mucosa Intestinal/microbiología , Consorcios Microbianos/fisiología , Animales , Bacterias/patogenicidad , Carcinogénesis/patología , Colitis/microbiología , Colitis/patología , Dieta , Disbiosis/microbiología , Disbiosis/patología , Humanos , Mucosa Intestinal/patología , Mucosa Intestinal/fisiología , Simbiosis/fisiologíaRESUMEN
OBJECTIVE: The gut microbiota has been implicated as an environmental factor that modulates obesity, and recent evidence suggests that microbiota-mediated changes in bile acid profiles and signalling through the bile acid nuclear receptor farnesoid X receptor (FXR) contribute to impaired host metabolism. Here we investigated if the gut microbiota modulates obesity and associated phenotypes through FXR. DESIGN: We fed germ-free (GF) and conventionally raised (CONV-R) wild-type and Fxr-/- mice a high-fat diet (HFD) for 10â weeks. We monitored weight gain and glucose metabolism and analysed the gut microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. RESULTS: The gut microbiota promoted weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. CONCLUSIONS: Our results indicate that the gut microbiota promotes diet-induced obesity and associated phenotypes through FXR, and that FXR may contribute to increased adiposity by altering the microbiota composition.
Asunto(s)
Hígado Graso/etiología , Microbioma Gastrointestinal , Vida Libre de Gérmenes , Obesidad/metabolismo , Obesidad/microbiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Tejido Adiposo/patología , Animales , Ácidos y Sales Biliares/metabolismo , Ciego/microbiología , Grasas de la Dieta/administración & dosificación , Hígado Graso/metabolismo , Trasplante de Microbiota Fecal , Heces/microbiología , Microbioma Gastrointestinal/genética , Expresión Génica , Glucosa/metabolismo , Inflamación/etiología , Células Secretoras de Insulina/patología , Macrófagos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/complicaciones , Fenotipo , Aumento de PesoRESUMEN
Two C57BL/6 mice colonies maintained in two rooms of the same specific pathogen-free (SPF) facility were found to have different gut microbiota and a mucus phenotype that was specific for each colony. The thickness and growth of the colon mucus were similar in the two colonies. However, one colony had mucus that was impenetrable to bacteria or beads the size of bacteria-which is comparable to what we observed in free-living wild mice-whereas the other colony had an inner mucus layer penetrable to bacteria and beads. The different properties of the mucus depended on the microbiota, as they were transmissible by transfer of caecal microbiota to germ-free mice. Mice with an impenetrable mucus layer had increased amounts of Erysipelotrichi, whereas mice with a penetrable mucus layer had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Thus, our study shows that bacteria and their community structure affect mucus barrier properties in ways that can have implications for health and disease. It also highlights that genetically identical animals housed in the same facility can have rather distinct microbiotas and barrier structures.
Asunto(s)
Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Microbiota/fisiología , Moco/citología , Moco/microbiología , ARN Ribosómico 16S/genética , Organismos Libres de Patógenos EspecíficosRESUMEN
In the distal colon, mucus secreting goblet cells primarily confer protection from luminal microorganisms via generation of a sterile inner mucus layer barrier structure. Bacteria-sensing sentinel goblet cells provide a secondary defensive mechanism that orchestrates mucus secretion in response to microbes that breach the mucus barrier. Previous reports have identified mucus barrier deficiencies in adult germ-free mice, thus implicating a fundamental role for the microbiota in programming mucus barrier generation. In this study, we have investigated the natural neonatal development of the mucus barrier and sentinel goblet cell-dependent secretory responses upon postnatal colonization. Combined in vivo and ex vivo analyses of pre- and post-weaning colonic mucus barrier and sentinel goblet cell maturation demonstrated a sequential microbiota-dependent development of these primary and secondary goblet cell-intrinsic protective functions, with dynamic changes in mucus processing dependent on innate immune signalling via MyD88, and development of functional sentinel goblet cells dependent on the NADPH/Dual oxidase family member Duox2. Our findings therefore identify new mechanisms of microbiota-goblet cell regulatory interaction and highlight the critical importance of the pre-weaning period for the normal development of colonic barrier function.
RESUMEN
Adaptive immune systems are present only in vertebrates. How do all the remaining animals withstand continuous attacks of permanently evolving pathogens? Even in the absence of adaptive immunity, every organism must be able to unambiguously distinguish "self" cells from any imaginable "nonself." Here, we analyzed the function of highly polymorphic gene vCRL1, which is expressed in follicle and blood cells of Ciona intestinalis, pointing to possible recognition roles either during fertilization or in immune reactions. By using segregation analysis, we demonstrate that vCRL1 locus is not involved in the control of self-sterility. Interestingly, genetic knockdown of vCRL1 in all tissues or specifically in hemocytes results in a drastic developmental arrest during metamorphosis exactly when blood system formation in Ciona normally occurs. Our data demonstrate that vCRL1 gene might be essential for the establishment of a functional blood system in Ciona. Presumably, presence of the vCRL1 receptor on the surface of blood cells renders them as self, whereas any cell lacking it is referred to as nonself and will be consequently destroyed. We propose that individual-specific receptor vCRL1 might be utilized to facilitate somatic self/nonself discrimination.
Asunto(s)
Ciona intestinalis/metabolismo , Hemocitos/metabolismo , Polimorfismo Genético , Receptores de Superficie Celular/metabolismo , Alelos , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Membrana Celular/metabolismo , Cruzamientos Genéticos , Femenino , Fertilización/genética , Técnicas de Silenciamiento del Gen , Sitios Genéticos/genética , Genotipo , Hemocitos/citología , Infertilidad/genética , Masculino , Metamorfosis Biológica/genética , Modelos Biológicos , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/metabolismo , Fenotipo , Transporte de ProteínasRESUMEN
The deaths of King Ludwig II of Bavaria and Bernhard von Gudden, Professor of Psychiatry in Munich, in Lake Starnberg near Munich on 13 June 1886 have often been mentioned in the psychiatric-historical literature and in fiction. Von Gudden had written a psychiatric assessment of the King, rating him permanently mentally ill and incapable of reigning. Ludwig II was declared legally incapacitated, dethroned and psychiatrically interned. We will report on an interdisciplinary research project conducted at the Heidelberg Academy of Sciences and Humanities. Information was collected from state, local and private archives in Germany and abroad on: (1) the correctness of the psychiatric assessment in form and content; (2) the constitutional basis of the deposition; and (3) its background, motives and execution. The results show that the psychiatric assessment was incorrect in substance and form. They highlight how those in power used psychiatry for their own purposes.