Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(18): 10055-10066, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32312822

RESUMEN

Synaptic activity in neurons leads to the rapid activation of genes involved in mammalian behavior. ATP-dependent chromatin remodelers such as the BAF complex contribute to these responses and are generally thought to activate transcription. However, the mechanisms keeping such "early activation" genes silent have been a mystery. In the course of investigating Mendelian recessive autism, we identified six families with segregating loss-of-function mutations in the neuronal BAF (nBAF) subunit ACTL6B (originally named BAF53b). Accordingly, ACTL6B was the most significantly mutated gene in the Simons Recessive Autism Cohort. At least 14 subunits of the nBAF complex are mutated in autism, collectively making it a major contributor to autism spectrum disorder (ASD). Patient mutations destabilized ACTL6B protein in neurons and rerouted dendrites to the wrong glomerulus in the fly olfactory system. Humans and mice lacking ACTL6B showed corpus callosum hypoplasia, indicating a conserved role for ACTL6B in facilitating neural connectivity. Actl6b knockout mice on two genetic backgrounds exhibited ASD-related behaviors, including social and memory impairments, repetitive behaviors, and hyperactivity. Surprisingly, mutation of Actl6b relieved repression of early response genes including AP1 transcription factors (Fos, Fosl2, Fosb, and Junb), increased chromatin accessibility at AP1 binding sites, and transcriptional changes in late response genes associated with early response transcription factor activity. ACTL6B loss is thus an important cause of recessive ASD, with impaired neuron-specific chromatin repression indicated as a potential mechanism.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Hipocampo/patología , Actinas/genética , Adenosina Trifosfato/genética , Animales , Trastorno del Espectro Autista/patología , Conducta Animal/fisiología , Cromatina/genética , Ensamble y Desensamble de Cromatina/genética , Emparejamiento Cromosómico/genética , Emparejamiento Cromosómico/fisiología , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Dendritas/genética , Dendritas/fisiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hipocampo/metabolismo , Humanos , Ratones , Ratones Noqueados , Mutación/genética , Neuronas/metabolismo , Neuronas/patología , Factores de Transcripción/genética
2.
Development ; 145(22)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30337375

RESUMEN

Advances in stem cell science allow the production of different cell types in vitro either through the recapitulation of developmental processes, often termed 'directed differentiation', or the forced expression of lineage-specific transcription factors. Although cells produced by both approaches are increasingly used in translational applications, their quantitative similarity to their primary counterparts remains largely unresolved. To investigate the similarity between in vitro-derived and primary cell types, we harvested and purified mouse spinal motor neurons and compared them with motor neurons produced by transcription factor-mediated lineage conversion of fibroblasts or directed differentiation of pluripotent stem cells. To enable unbiased analysis of these motor neuron types and their cells of origin, we then subjected them to whole transcriptome and DNA methylome analysis by RNA sequencing (RNA-seq) and reduced representation bisulfite sequencing (RRBS). Despite major differences in methodology, lineage conversion and directed differentiation both produce cells that closely approximate the primary motor neuron state. However, we identify differences in Fas signaling, the Hox code and synaptic gene expression between lineage-converted and directed differentiation motor neurons that affect their utility in translational studies.


Asunto(s)
Linaje de la Célula/genética , Embrión de Mamíferos/citología , Genómica , Neuronas Motoras/citología , Células Madre Pluripotentes/citología , Animales , Epigénesis Genética , Ratones Endogámicos C57BL , Neuronas Motoras/metabolismo , Células Madre Pluripotentes/metabolismo , Transcripción Genética
3.
Am J Med Genet C Semin Med Genet ; 166C(3): 333-49, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25195934

RESUMEN

The BAF (mammalian SWI/SNF) complexes are a family of multi-subunit ATP-dependent chromatin remodelers that use ATP hydrolysis to alter chromatin structure. Distinct BAF complex compositions are possible through combinatorial assembly of homologous subunit families and can serve non-redundant functions. In mammalian neural development, developmental stage-specific BAF assemblies are found in embryonic stem cells, neural progenitors and postmitotic neurons. In particular, the neural progenitor-specific BAF complexes are essential for controlling the kinetics and mode of neural progenitor cell division, while neuronal BAF function is necessary for the maturation of postmitotic neuronal phenotypes as well as long-term memory formation. The microRNA-mediated mechanism for transitioning from npBAF to nBAF complexes is instructive for the neuronal fate and can even convert fibroblasts into neurons. The high frequency of BAF subunit mutations in neurological disorders underscores the rate-determining role of BAF complexes in neural development, homeostasis, and plasticity.


Asunto(s)
Complejos Multiproteicos/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Anomalías Múltiples/genética , Actinas/genética , Actinas/metabolismo , Animales , Trastornos Generalizados del Desarrollo Infantil/genética , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dendritas/fisiología , Proteínas de Drosophila/genética , Evolución Molecular , Cara/anomalías , Deformidades Congénitas de la Mano/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Mamíferos , Memoria/fisiología , Ratones , Micrognatismo/genética , Cuello/anomalías , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factor de Transcripción STAT3/metabolismo , Esquizofrenia/genética , Células Madre/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Levaduras
4.
Pain ; 162(12): 2909-2916, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34028234

RESUMEN

ABSTRACT: Biologic factors that predict risk for and mediate the development of common outcomes of trauma exposure such as chronic posttraumatic pain (CPTP) are poorly understood. In the current study, we examined whether peritraumatic circulating 17ß-estradiol (E2) levels influence CPTP trajectories. 17ß-estradiol levels were measured in plasma samples (n = 254) collected in the immediate aftermath of trauma exposure from 3 multiethnic longitudinal cohorts of men and women trauma survivors. Chronic posttraumatic pain severity was evaluated 6 weeks, 6 months, and 1 year after traumatic stress exposure. Repeated measures mixed models were used to test the relationship between peritraumatic E2 levels and prospective CPTP. Secondary analyses in a nested cohort assessed the influence of participant body mass index on the E2-CPTP relationship. In women, a statistically significant inverse relationship between peritraumatic E2 and CPTP was observed (ß = -0.280, P = 0.043) such that higher E2 levels predicted lower CPTP severity over time. Secondary analyses identified an E2 * body mass index interaction in men from the motor vehicle collision cohort such that obese men with higher E2 levels were at greater risk of developing CPTP. In nonobese men from the motor vehicle collision cohort and in men from the major thermal burn injury cohort, no statistically significant relationship was identified. In conclusion, peritraumatic circulating E2 levels predict CPTP vulnerability in women trauma survivors. In addition, these data suggest that peritraumatic administration of E2 might improve CPTP outcomes for women; further research is needed to test this possibility.


Asunto(s)
Dolor Crónico , Trastornos por Estrés Postraumático , Accidentes de Tránsito , Dolor Crónico/etiología , Estradiol , Femenino , Humanos , Masculino , Estudios Prospectivos , Trastornos por Estrés Postraumático/etiología
5.
Nat Med ; 24(3): 313-325, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29400714

RESUMEN

An intronic GGGGCC repeat expansion in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), but the pathogenic mechanism of this repeat remains unclear. Using human induced motor neurons (iMNs), we found that repeat-expanded C9ORF72 was haploinsufficient in ALS. We found that C9ORF72 interacted with endosomes and was required for normal vesicle trafficking and lysosomal biogenesis in motor neurons. Repeat expansion reduced C9ORF72 expression, triggering neurodegeneration through two mechanisms: accumulation of glutamate receptors, leading to excitotoxicity, and impaired clearance of neurotoxic dipeptide repeat proteins derived from the repeat expansion. Thus, cooperativity between gain- and loss-of-function mechanisms led to neurodegeneration. Restoring C9ORF72 levels or augmenting its function with constitutively active RAB5 or chemical modulators of RAB5 effectors rescued patient neuron survival and ameliorated neurodegenerative processes in both gain- and loss-of-function C9ORF72 mouse models. Thus, modulating vesicle trafficking was able to rescue neurodegeneration caused by the C9ORF72 repeat expansion. Coupled with rare mutations in ALS2, FIG4, CHMP2B, OPTN and SQSTM1, our results reveal mechanistic convergence on vesicle trafficking in ALS and FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Degeneración Nerviosa/genética , Proteínas de Unión al GTP rab5/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Expansión de las Repeticiones de ADN/genética , Modelos Animales de Enfermedad , Endosomas/genética , Demencia Frontotemporal/patología , Regulación de la Expresión Génica/genética , Haploinsuficiencia/genética , Humanos , Intrones/genética , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Mutación , Degeneración Nerviosa/fisiopatología
6.
Cell Stem Cell ; 9(3): 205-18, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21852222

RESUMEN

The mammalian nervous system comprises many distinct neuronal subtypes, each with its own phenotype and differential sensitivity to degenerative disease. Although specific neuronal types can be isolated from rodent embryos or engineered from stem cells for translational studies, transcription factor-mediated reprogramming might provide a more direct route to their generation. Here we report that the forced expression of select transcription factors is sufficient to convert mouse and human fibroblasts into induced motor neurons (iMNs). iMNs displayed a morphology, gene expression signature, electrophysiology, synaptic functionality, in vivo engraftment capacity, and sensitivity to degenerative stimuli similar to those of embryo-derived motor neurons. We show that the converting fibroblasts do not transit through a proliferative neural progenitor state, and thus form bona fide motor neurons via a route distinct from embryonic development. Our findings demonstrate that fibroblasts can be converted directly into a specific differentiated and functional neural subtype, the spinal motor neuron.


Asunto(s)
Sinapsis Eléctricas/metabolismo , Fibroblastos/metabolismo , Neuronas Motoras/metabolismo , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Animales , Transdiferenciación Celular , Células Cultivadas , Embrión de Pollo , Sinapsis Eléctricas/patología , Electrofisiología , Desarrollo Embrionario , Fibroblastos/patología , Fibroblastos/trasplante , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/patología , Ratones , Neuronas Motoras/patología , Plasticidad Neuronal , Médula Espinal/embriología , Médula Espinal/patología , Trasplante de Células Madre , Factores de Transcripción/genética , Transgenes/genética
7.
Cell Stem Cell ; 5(5): 491-503, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-19818703

RESUMEN

The combined activity of three transcription factors can reprogram adult cells into induced pluripotent stem cells (iPSCs). However, the transgenic methods used for delivering reprogramming factors have raised concerns regarding the future utility of the resulting stem cells. These uncertainties could be overcome if each transgenic factor were replaced with a small molecule that either directly activated its expression from the somatic genome or in some way compensated for its activity. To this end, we have used high-content chemical screening to identify small molecules that can replace Sox2 in reprogramming. We show that one of these molecules functions in reprogramming by inhibiting Tgf-beta signaling in a stable and trapped intermediate cell type that forms during the process. We find that this inhibition promotes the completion of reprogramming through induction of the transcription factor Nanog.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Pirazoles/farmacología , Piridinas/farmacología , Factores de Transcripción SOXB1/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales , Benzamidas/farmacología , Línea Celular , Transdiferenciación Celular , Dioxoles/farmacología , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/patología , Ratones , Proteína Homeótica Nanog , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Factores de Transcripción SOXB1/genética , Transducción de Señal , Transducción Genética , Factor de Crecimiento Transformador beta/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA