RESUMEN
Spatial variations in dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) were surveyed in the surface microlayer and in the subsurface waters of the low productivity South China Sea in May 2005. Overall, average subsurface water concentrations of DMS and DMSP of dissolved (DMSPd) and particulate (DMSPp) fractions were 1.74 (1.00-2.50), 3.92 (2.21-6.54) and 6.06 (3.40-8.68) nM, respectively. No enrichment in DMS and DMSPp was observed in the microlayer. In contrast, the microlayer showed a DMSPd enrichment, with an average enrichment factor (EF, defined as the ratio of the microlayer concentration to subsurface water concentration) of 1.40. In the study area, none of the sulfur components were correlated with chlorophyll a. An important finding in this study was that DMS, DMSP and chlorophyll a concentrations in the surface microlayer were respectively correlated with those in the subsurface water, suggesting a close linkage between these two water bodies. The ratios of DMS:Chl-a and DMSPp:Chl-a showed a gradually increasing trend from North to South. This might be due to changes in the proportion of DMSP producers in the phytoplankton community with the increased surface seawater temperature. A clear diurnal variation in the DMS and DMSP concentrations was observed at an anchor station with the highest concentrations appearing during the day and the lowest concentrations during the night. The higher DMS and DMSP concentrations during daytime might be attributed to the light-induced increase in both algal synthesis and exudation of DMSP and biological production of DMS. The mean flux of DMS from the investigated area to the atmosphere was estimated to be 2.06 micromo lm(-2)d(-1). This low DMS emission flux, together with the low DMS surface concentrations was attributed to the low productivity in this sea.
Asunto(s)
Monitoreo del Ambiente , Agua de Mar/análisis , Sulfuros/análisis , Compuestos de Sulfonio/análisis , China , Clorofila/análisis , Clorofila A , Océanos y Mares , Estaciones del Año , Factores de Tiempo , VientoRESUMEN
Heterosis is a biological phenomenon whereby the offspring from two parents show improved and superior performance than either inbred parental lines. Hybrid rice is one of the most successful apotheoses in crops utilizing heterosis. Transcriptional profiling of F(1) super-hybrid rice Liangyou-2186 and its parents by serial analysis of gene expression (SAGE) revealed 1183 differentially expressed genes (DGs), among which DGs were found significantly enriched in pathways such as photosynthesis and carbon-fixation, and most of the key genes involved in the carbon-fixation pathway exhibited up-regulated expression in F(1) hybrid rice. Moreover, increased catabolic activity of corresponding enzymes and photosynthetic efficiency were also detected, which combined to indicate that carbon fixation is enhanced in F(1) hybrid, and might probably be associated with the yield vigor and heterosis in super-hybrid rice. By correlating DGs with yield-related quantitative trait loci (QTL), a potential relationship between differential gene expression and phenotypic changes was also found. In addition, a regulatory network involving circadian-rhythms and light signaling pathways was also found, as previously reported in Arabidopsis, which suggest that such a network might also be related with heterosis in hybrid rice. Altogether, the present study provides another view for understanding the molecular mechanism underlying heterosis in rice.