Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Am J Respir Cell Mol Biol ; 71(1): 30-42, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579159

RESUMEN

Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions among these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and the development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. In addition, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aim to reveal new insights into the molecular mechanisms that drive lung injury toward fibrosis and identify potential targets for therapeutic intervention.


Asunto(s)
Comunicación Celular , Microambiente Celular , Fibroblastos , Lesión Pulmonar , Alveolos Pulmonares , Humanos , Animales , Lesión Pulmonar/patología , Lesión Pulmonar/metabolismo , Alveolos Pulmonares/patología , Alveolos Pulmonares/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Fibrosis , Macrófagos/metabolismo , Macrófagos/patología
2.
BMC Urol ; 21(1): 1, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407372

RESUMEN

BACKGROUND: Osteochondroma is the most common benign bone neoplasm and is sometimes referred to as osteocartilaginous exostosis. The symptoms caused by osteochondroma are rare, especially the urogenital complications. Therefore, this tumour is sometimes misdiagnosed. CASE PRESENTATION: This report described a 70-year-old woman with hematuria who was initially misdiagnosed with a bladder tumour in the outpatient department by a urologist. However, during cystoscopy, we found that the mass did not resemble a bladder tumor. Multidisciplinary approach with careful analysis of the imaging data suggested the diagnosis of osteochondroma. Open surgical excision of the mass was done and histology confirmed the diagnosis of benign osteochondroma. After 6 months of follow-up, the patient was still asymptomatic. CONCLUSIONS: This case illustrates that hematuria is caused by not only urogenital disease but also osteochondroma. We present this case to draw the attention of clinicians to osteochondroma of the pubic symphysis.


Asunto(s)
Neoplasias Óseas/complicaciones , Hematuria/etiología , Osteocondroma/complicaciones , Sínfisis Pubiana , Anciano , Femenino , Humanos
3.
Inorg Chem ; 58(1): 39-42, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30561201

RESUMEN

Here, we describe the synthesis and characterization of the two µ-hydrido models of [NiFe]H2ases prepared from a new type of H2 activation by the corresponding two µ-hydroxo models. In addition, another µ-hydrido model prepared by the anionic exchange between one of the two µ-hydrido models and KPF6 is also reported. Interestingly, the synthesis of the two µ-hydrido models from H2 activation represents the first functional modeling of the H2 activation catalyzed by the [NiFe]H2ase (Ni-SIr)I state to give the Ni-R state.

4.
Inorg Chem ; 56(24): 15216-15230, 2017 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-29188999

RESUMEN

On the basis of preparation and characterization of [Fe]-H2ase models (2-COCH2-6-HOCH2C5H3N)Fe(CO)2L (A, L = η1-SCOMe; B, L = η1-2-SC5H4N), the chemical reactivities of A and B with various electrophilic and nucleophilic reagents have been investigated, systematically. Thus, when A reacted with 1 equiv of MeCOCl in the presence of Et3N in MeCN to give the η2-SCOMe-coordinated acylation product (2-COCH2-6-MeCO2CH2C5H3N)Fe(CO)2(η2-SCOMe) (1), treatment of A with excess HBF4·Et2O in MeCN gave the cationic MeCN-coordinated complex [(2-COCH2-6-HOCH2C5H3N)Fe(CO)2(MeCN)](BF4) (2). In addition, when 2 was treated with 1 equiv of 2,6-(p-4-MeC6H4)2C6H3SK or PPh3 in CH2Cl2 to give the thiophenolato- and PPh3-substituted derivatives (2-COCH2-6-HOCH2C5H3N)Fe(CO)2[2,6-(p-MeC6H4)2C6H3S] (3) and [(2-COCH2-6-HOCH2C5H3N)Fe(CO)2(PPh3)](BF4) (4), treatment of B with 1 equiv of PMe3 or P(OMe)3 in THF afforded the phosphine- and phosphite-substituted complexes (2-COCH2-6-HOCH2C5H3N)(η1-2-SC5H4N)Fe(CO)2L (5, L = PMe3; 6, L = P(OMe)3). Interestingly, in contrast to A, when B reacted with excess HBF4·Et2O in MeCN to afford the BF3 adduct [2-COCH2-6-HO(BF3)CH2C5H3N]Fe(CO)2(η1-2-SC5H4N) (7), reaction of B with 1 equiv of p-MeC6H4COCl in the presence of Et3N in MeCN gave not only the expected 2-acylmethyl-6-p-toluoyloxomethylpyridine-containing complex (2-COCH2-6-p-MeC6H4CO2CH2C5H3N)Fe(CO)2(η2-2-SC5H4N) (8), but also gave the unexpected 2-toluoyloxovinyl-6-toluoyloxomethylpyridine-containing complex (2-p-MeC6H4CO2C2H-6-p-MeC6H4CO2CH2C5H3N)Fe(CO)2(η2-2-SC5H4N) (9). While the possible pathways for the novel reactions leading to complexes 1, 2, and 7-9 are suggested, the structures of complexes B, 1-4, and 6-9 were unambiguously confirmed by X-ray crystallography. In addition, model complexes A and B have been found to be catalysts for proton reduction to H2 from TFA under CV conditions.


Asunto(s)
Materiales Biomiméticos/química , Hidrogenasas/química , Compuestos de Hierro/química , Proteínas Hierro-Azufre/química , Piridinas/química , Catálisis , Cristalografía por Rayos X , Técnicas Electroquímicas , Ligandos , Modelos Moleculares , Oxidación-Reducción , Protones
5.
Chemistry ; 22(45): 16304-16314, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27717110

RESUMEN

The first quaternary ammonium-group-containing [FeFe]-hydrogenase models [(µ-PDT)Fe2 (CO)4 {κ2 -(Ph2 P)2 N(CH2 )2 NMe2 BzBr}] (2; PDT=propanedithiolate) and [(µ-PDT)Fe2 (CO)4 {µ-(Ph2 P)2 N(CH2 )2 NMe2 BzBr}] (4) have been prepared by the quaternization of their precursors [(µ-PDT)Fe2 (CO)4 {κ2 -(Ph2 P)2 N(CH2 )2 NMe2 }] (1) and [(µ-PDT)Fe2 (CO)4 {µ-(Ph2 P)2 N(CH2 )2 NMe2 }] (3) with benzyl bromide in high yields. Although new complexes 1-4 have been fully characterized by spectroscopic and X-ray crystallographic studies, the chelated complexes 1 and 2 converted into their bridged isomers 3 and 4 at higher temperatures, thus demonstrating that these bridged isomers are thermodynamically favorable. An electrochemical study on hydrophilic models 2 and 4 in MeCN and MeCN/H2 O as solvents indicates that the reduction potentials are shifted to less-negative potentials as the water content increases. This outcome implies that both 2 and 4 are more easily reduced in the mixed MeCN/H2 O solvent than in MeCN. In addition, hydrophilic models 2 and 4 act as electrocatalysts and achieve higher icat /ip values and turnover numbers (TONs) in MeCN/H2 O as a solvent than in MeCN for the production of hydrogen from the weak acid HOAc.

6.
Inorg Chem ; 55(3): 1258-69, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26756374

RESUMEN

As active site models of [Fe]-hydrogenase, tridentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing complexes η(3)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(L1) (4, L1 = I; 5, SCN; 6, PhCS2) were prepared via the following multistep reactions: (i) etherification of 2-MeO2C-6-HOC5H3N with ClCH2OMe to give 2-MeO2C-6-MeOCH2OC5H3N (1), (ii) reduction of 1 with NaBH4 to give 2-HOCH2-6-MeOCH2OC5H3N (2), (iii) esterification of 2 with 4-toluenesulfonyl chloride to give 2-TsOCH2-6-MeOCH2OC5H3N (3), (iv) nucleophilic substitution of 3 with Na2Fe(CO)4 followed by treatment of the resulting Fe(0) intermediate Na[(2-CH2-6-MeOCH2OC5H3N)Fe(CO)4] (M1) with I2 to give complex 4, and (v) condensation of 4 with KSCN and PhCS2K to give complexes 5 and 6, respectively. In contrast to the preparation of complexes 4-6, bidentate 2-acylmethyl-6-methoxymethoxy-difunctionalized pyridine-containing model complexes η(2)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(I)(L2) (7, L2 = PPh3; 8, Cy-C6H11NC) and η(2)-(2-COCH2-6-MeOCH2OC5H3N)Fe(CO)2(L3) (9, L3 = 2-SC5H4N; 10, 8-SC9H6N) were prepared by ligand exchange reactions of 4 with PPh3, Cy-C6H11NC, 2-KSC5H4N, and 8-KSC9H6N, respectively. Particularly interesting is that the tridentate 2,6-bis(acylmethyl)pyridine- and 2-acylmethyl-6-arylthiomethylpyridine-containing model complexes η(3)-[2,6-(COCH2)2C5H3N]Fe(CO)2(L4) (11, L4 = PPh3; 12, CO) and η(3)-2-(COCH2-6-ArSCH2C5H3N)Fe(CO)2(ArS) (13, ArS = PhS; 14, 2-S-5-MeC4H2O) were obtained, unexpectedly, when 2,6-(TsOCH2)2C5H3N reacted with Na2Fe(CO)4 followed by treatment of the resulting mixture with ligands PPh3 and CO or disulfides (PhS)2 and (2-S-5-MeC4H2O)2. Reactions of ligand precursors 3 and 2,6-(TsOCH2)2C5H3N with Na2Fe(CO)4 were monitored by in situ IR spectroscopy, and the possible pathways for producing complexes 4 and 11-14 via intermediates Na[(2-CH2-6-MeOCH2OC5H3N)Fe(CO)4] (M1), Na[(2-CH2-6-TsOCH2C5H3N)Fe(CO)4] (M2), and (2-COCH2-6-CH2C5H3N)Fe(CO)3 (M3) are suggested. New compounds 1-14 were characterized by elemental analysis, spectroscopy, and, for some of them, X-ray crystallography.


Asunto(s)
Hidrogenasas/química , Compuestos de Hierro/síntesis química , Proteínas Hierro-Azufre/química , Hidrogenasas/metabolismo , Compuestos de Hierro/química , Compuestos de Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Ligandos , Modelos Moleculares , Conformación Molecular , Estructura Molecular
7.
Inorg Chem ; 52(19): 11618-26, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-24063734

RESUMEN

Four new dinuclear Ni/Mn model complexes RN(PPh2)2Ni(µ-SEt)2(µ-Cl)Mn(CO)3 (7, R = p-MeC6H4CH2; 8, R = EtO2CCH2) and RN(PPh2)2Ni(µ-SEt)2(µ-Br)Mn(CO)3 (9, R = p-MeC6H4CH2; 10, R = EtO2CCH2) have been prepared via the four separated step-reactions involving six new precursors RN(PPh2)2 (1, R = p-MeC6H4CH2; 2, R = EtO2CCH2), RN(PPh2)2NiCl2 (3, R = p-MeC6H4CH2; 4, R = EtO2CCH2), and RN(PPh2)2Ni(SEt)2 (5, R = p-MeC6H4CH2; 6, R = EtO2CCH2). The Et3N-assisted aminolysis of Ph2PCl with p-MeC6H4CH2NH2 or EtO2CCH2NH2·HCl in CH2Cl2 gave the azadiphosphine ligands 1 and 2 in 38% and 53% yields, whereas the coordination reaction of 1 or 2 with NiCl2·6H2O in CH2Cl2/MeOH afforded the mononuclear Ni dichloride complexes 3 and 4 in 59% and 78% yields, respectively. While thiolysis of 3 or 4 with EtSH under the assistance of Et3N in CH2Cl2 produced the mononuclear Ni dithiolate complexes 5 and 6 in 64% and 68% yields, further treatment of 5 and 6 with Mn(CO)5Cl or Mn(CO)5Br resulted in formation of the dinuclear Ni/Mn model complexes 7-10 in 31-73% yields. All the new compounds 1-10 have been structurally characterized, while model complexes 7 and 9 have been found to be catalysts for HOAc proton reduction to hydrogen under CV conditions.


Asunto(s)
Hidrogenasas/química , Modelos Biológicos , Dominio Catalítico , Cristalografía por Rayos X , Electroquímica , Estructura Molecular
8.
Dalton Trans ; 52(27): 9215-9228, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350744

RESUMEN

The combined structural and functional modeling study of [Fe]-H2ase has remained a great challenge, to date. Now, we report a series of new structural and functional [Fe]-H2ase models (1-6) that contain a mono-, di- or tetrasubstituted pyridine ligand with a biomimetic fac-C, N, and S ligation. While models 1-3, 5 and 6 are conveniently prepared by a novel flexible pyridine ligand (FPL)-based method, model 4 is prepared simply by an intramolecular CO replacement reaction of model 3. More interestingly, the structural study by spectroscopy and X-ray crystallography proves that these new models include a biomimetic fac-acyl (or methylene) C, pyridyl N, and thioether S ligation to an Fe(II) center and the C-Fe(II) σ bond is trans to an iodo ligand. In addition, the chemical reactivity study proves that they all have the enzyme-like H2 activation and hydride transfer functions in the presence of imidazolium Im+, AgBF4 and Et3N. Particularly interesting is that a possible pathway for such H2 activation and hydride transfer reactions catalyzed by a representative model 4 is proposed and the existence of the highly unstable 5-coordinate intermediate M4 and Fe-H species M5 is supported by the isolation and characterization of their MeCN-coordinated derivative 7 and chloro-substituted derivative 8, respectively.

9.
Dalton Trans ; 52(12): 3755-3768, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36857705

RESUMEN

To develop the structural and functional modeling chemistry of [NiFe]-H2ases, a series of new biomimetics for the active site of [NiFe]-H2ases have been prepared by various synthetic methods. Treatment of the mononuclear Ni complex (pnp)NiCl2 (pnp = (Ph2PCH2)2NPh) with (dppv)Fe(CO)2(pdt) (dppv = 1,2-(Ph2P)2C2H2, pdt = 1,3-propanedithiolate) and KPF6 gave the dicarbonyl complex [(pnp)Ni(pdt)Fe(CO)2(dppv)](PF6)2 ([1](PF6)2). Further treatment of [1](PF6)2 and [(dppe)Ni(pdt)Fe(CO)2(dppv)](BF4)2 (dppe = 1,2-(Ph2P)2C2H4) with the decarbonylation agent Me3NO and pyridine afforded the novel sp3 C-Fe bond-containing complexes [(pnp)Ni(SCH2CH2CHS)Fe(CO)(dppv)]PF6 ([2]PF6) and [(dppe)Ni(SCH2CH2CHS)Fe(CO)(dppv)]BF4 ([3]BF4). More interestingly, the first t-carboxylato complexes [(pnp)Ni(pdt)Fe(CO)(t-O2CR)(dppv)]PF6 ([4]PF6, R = H; [5]PF6, R = Me; [6]PF6, R = Ph) could be prepared by reactions of [1]PF6 with the corresponding carboxylic acids RCO2H in the presence of Me3NO, whereas further reactions of [4]PF6-[6]PF6 with aqueous HPF6 and 1.5 MPa H2 gave rise to the µ-hydride complex [(pnp)Ni(pdt)Fe(CO)(µ-H)(dppv)]PF6 ([7]PF6). Except for H2 activation by t-carboxylato complexes [4]PF6-[6]PF6 to give a µ-hydride complex ([7]PF6), the sp3 C-Fe bond-containing complex [2]PF6 was found to be a catalyst for proton reduction to H2 under CV conditions. Furthermore, the chemical reactivity of the µ-hydride complex [7]PF6 displayed in the e- transfer reaction with FcPF6 in the presence of CO, the H2 evolution reaction with the protonic acid HCl, and the H- transfer reaction with N-methylacridinium hexafluorophosphate ([NMA]PF6) was systematically studied. As a result, a series of the expected products such as H2, ferrocene, the dicarbonyl complex [1](PF6)2, the µ-chloro complex [(pnp)Ni(pdt)Fe(CO)(µ-Cl)(dppv)]PF6 ([8]PF6), the t-MeCN-coordinated complex [(pnp)Ni(pdt)Fe(CO)(t-MeCN)(dppv)](PF6)2 ([9](PF6)2) and the H- transfer product AcrH2 were produced. While all the newly prepared model complexes were structurally characterized by spectroscopic methods, the molecular structures of some of their representatives were confirmed by X-ray crystallography.

10.
Signal Transduct Target Ther ; 8(1): 432, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949875

RESUMEN

The Omicron variant of the severe acute respiratory syndrome coronavirus 2 (SARS­CoV­2) infected a substantial proportion of Chinese population, and understanding the factors underlying the severity of the disease and fatality is valuable for future prevention and clinical treatment. We recruited 64 patients with invasive ventilation for COVID-19 and performed metatranscriptomic sequencing to profile host transcriptomic profiles, plus viral, bacterial, and fungal content, as well as virulence factors and examined their relationships to 28-day mortality were examined. In addition, the bronchoalveolar lavage fluid (BALF) samples from invasive ventilated hospital/community-acquired pneumonia patients (HAP/CAP) sampled in 2019 were included for comparison. Genomic analysis revealed that all Omicron strains belong to BA.5 and BF.7 sub-lineages, with no difference in 28-day mortality between them. Compared to HAP/CAP cohort, invasive ventilated COVID-19 patients have distinct host transcriptomic and microbial signatures in the lower respiratory tract; and in the COVID-19 non-survivors, we found significantly lower gene expressions in pathways related viral processes and positive regulation of protein localization to plasma membrane, higher abundance of opportunistic pathogens including bacterial Alloprevotella, Caulobacter, Escherichia-Shigella, Ralstonia and fungal Aspergillus sydowii and Penicillium rubens. Correlational analysis further revealed significant associations between host immune responses and microbial compositions, besides synergy within viral, bacterial, and fungal pathogens. Our study presents the relationships of lower respiratory tract microbiome and transcriptome in invasive ventilated COVID-19 patients, providing the basis for future clinical treatment and reduction of fatality.


Asunto(s)
COVID-19 , Microbiota , Neumonía , Humanos , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/genética , Respiración Artificial , Pulmón , Neumonía/metabolismo , Bacterias
11.
Inorg Chem ; 51(14): 7466-8, 2012 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-22757742

RESUMEN

The first acylmethyl(hydroxymethyl)pyridine ligand-containing [Fe]hydrogenase model complexes 2-4 have been synthesized starting from the nucleophilic substitution reaction of 2-(4-MeC(6)H(4)SO(3)CH(2))-6-HOCH(2)C(5)H(3)N with Na(2)Fe(CO)(4). While the reaction course for producing complex 3 via the highly unstable intermediate complex 1 is monitored by in situ IR spectroscopy, the isolated model complexes 2-4 are fully characterized.


Asunto(s)
Materiales Biomiméticos/síntesis química , Biomimética , Hidrogenasas/química , Proteínas Hierro-Azufre/química , Piridinas/química , Materiales Biomiméticos/química , Dominio Catalítico , Cristalografía por Rayos X , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Ligandos , Modelos Moleculares , Estructura Molecular
12.
Int J Med Inform ; 157: 104638, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34775213

RESUMEN

BACKGROUND: The cytological analysis of bronchoalveolar lavage fluid (BALF) plays an essential role in the differential diagnosis of respiratory diseases. In recent years, deep learning has demonstrated excellent performance in image processing and object recognition. OBJECTIVES: We aim to apply deep learning to the automated interpretation and analysis of BALF. METHOD: Visual images were acquired using an automated biological microscopy platform. We propose a three-step algorithm to automatically interpret BALF cytology based on a convolutional neural network (CNN). The clinical value was evaluated at the patient level. RESULTS: Our model successfully detected most cells in BALF specimens and achieved a sensitivity, precision, and F1 score of over 0.9 for most cell types. In two tests in the clinical context, the algorithm outperformed experienced practitioners. CONCLUSION: The program can automatically provide the cytological background of BALF and augment clinical decision-making for clinicians.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Líquido del Lavado Bronquioalveolar , Diagnóstico Diferencial , Humanos , Procesamiento de Imagen Asistido por Computador
13.
Chem Commun (Camb) ; 58(87): 12168-12171, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239209

RESUMEN

Despite a variety of [Fe]-H2ase models prepared so far, the structural and functional modeling study of the enzyme has remained a great challenge. Now, we report a new type of flexible pyridine ligand (FPL)-based synthetic method by which two novel [Fe]-H2ase models have been prepared. Notably, the two models contain not only a biomimetic fac-acyl C, pyridyl N, thioether S coordination mode but also possess the enzyme-like H2/D2 activation functions.


Asunto(s)
Materiales Biomiméticos , Hidrogenasas , Proteínas Hierro-Azufre , Hidrogenasas/química , Ligandos , Biomimética , Modelos Moleculares , Proteínas Hierro-Azufre/química , Piridinas/química , Materiales Biomiméticos/química
14.
Chem Biol Interact ; 360: 109903, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35307379

RESUMEN

Circular RNA (circRNA)-associated competing endogenous RNA (ceRNA) mechanism have emerged as critical mechanism in cancer initiation and progression. However, the roles of the circRNA-microRNA (miRNA)-messenger RNA ceRNA network in osteosarcoma are still not fully characterized. In this study, therefore, circ_0078767-related ceRNA mechanism in osteosarcoma was studied. Bioinformatics tools primarily identified differentially expressed circRNAs and their downstream miRNAs in osteosarcoma, implying the potential interaction between circ_0078767, miR-330-3p, and cyclin-dependent kinase 14 (CDK14) in this malignancy, which were further verified by means of RNA immunoprecipitation, RNA pull-down, and dual-luciferase reporter gene assays. Aberrant abundance of circ_0078767 was found in both osteosarcoma tissues and cells, relating to dismal prognosis in patients with osteosarcoma. Functionally, circ0078767 strengthened the proliferation, invasiveness, and migration of osteosarcoma cells, which could be neutralized by miR-330-3p. Additionally, miR-330-3p targeted and decreased CDK14 expression whereby motivating the malignant phenotypes of osteosarcoma cells. Through in vivo experiments, we further confirmed that circ_0078767 targeted miR-330-3p to upregulate CDK14, whereby strengthening the in vivo tumorigenic and metastatic ability of osteosarcoma cells. Circ_0078767 promotes the occurrence and development of osteosarcoma by upregulating CDK14 in a miR-330-3p-dependent manner.


Asunto(s)
Neoplasias Óseas , MicroARNs , Osteosarcoma , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Quinasas Ciclina-Dependientes , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Osteosarcoma/metabolismo , ARN Circular/genética
15.
Bioengineered ; 13(5): 11973-11986, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34709120

RESUMEN

Lung ischemia/reperfusion (I/R) injury (LIRI) is a common complication after lung transplantation, embolism, and trauma. N6-methyladenosine (m6A) methylation modification is implicated in the pathogenesis of I/R injury. However, there are no or few reports of m6A-related regulators in LIRI till now. In this text, dysregulated genes in lung tissues of LIRI rats versus the sham group were identified by RNA sequencing (RNA-seq). RNA-seq outcomes revealed that only YTH N6-methyladenosine RNA binding protein 3 (YTHDF3) and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) were differentially expressed in the LIRI versus sham group among 20 m6A-related regulators. Next, the functions and molecular mechanisms of YTHDF3 and IGF2BP2 in LIRI were investigated in a hypoxia/reoxygenation-induced BEAS-2B cell injury model in vitro. Results showed that YTHDF3 or IGF2BP2 knockdown attenuated hypoxia/reoxygenation-mediated inhibitory effects on cell survival and cell cycle progression and inhibited hypoxia/reoxygenation-induced cell apoptosis and pro-inflammatory cytokine secretion in BEAS-2B cells. Genes that could be directly regulated by YTHDF3 or IGF2BP2 were identified based on prior experimental data and bioinformatics analysis. Moreover, multiple potential downstream pathways of YTHDF3 and IGF2BP2 were identified by the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis of the above-mentioned genes. Among these potential pathways, we demonstrated that YTHDF3 or IGF2BP2 knockdown inhibited hypoxia/reoxygenation-activated p38, ERK1/2, AKT, and NF-κB pathways in BEAS-2B cells. In conclusion, YTHDF3 or IGF2BP2 knockdown weakened hypoxia/reoxygenation-induced human lung bronchial epithelial cell injury by inactivating p38, AKT, ERK1/2, and NF-κB pathways.


Asunto(s)
FN-kappa B , Proteínas de Unión al ARN , Somatomedinas , Animales , Proliferación Celular/genética , Células Epiteliales/metabolismo , Humanos , Hipoxia , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ratas , Somatomedinas/metabolismo , Somatomedinas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Ann Transl Med ; 10(1): 7, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35242852

RESUMEN

BACKGROUND: To analyze the clinical value of microbiological rapid on-site evaluation (M-ROSE) in the respiratory intensive care unit (RICU) and its impact on the prognosis of critically ill patients. METHODS: We retrospectively included patients who underwent bedside bronchoalveolar lavage in the RICU of Chinese People's Liberation Army (PLA) General Hospital between January 2017 and December 2020. The patients were divided into M-ROSE and control groups according to whether bedside M-ROSE was performed with to guide the treatment, and for control group, routine treatments were administrated based on all the clinical information. The basic information, treatment methods, test indicators, and prognostic evaluation of the patients were collected and analyzed. RESULTS: A total of 242 patients were enrolled, including 130 patients in the M-ROSE group and 112 patients in the control group. The inflammatory indicators of the patients in the M-ROSE group decreased significantly faster after admission than those of patients in the control group, and the patients in the M-ROSE group used significantly more types of antibiotics [5 (3.0, 5.0)] than those in the control group [3 (2.0, 4.0)] (P<0.05). Among the patients who were on invasive mechanical ventilation, the mortality rate of the M-ROSE group was significantly lower than that of the control group (P<0.05). The coincidence rate of the M-ROSE results with metagenomic next-generation sequencing (mNGS) results was 66.2%, which was higher than the coincidence rate of other laboratory results. In addition, the M-ROSE reports were available significantly faster than the smear, culture, and mNGS results. CONCLUSIONS: M-ROSE has high diagnostic value for lower respiratory tract pathogens. The application of M-ROSE in the RICU can help to promote a decrease in patients' inflammation levels and reduce the mortality of patients on invasive mechanical ventilation.

17.
Mil Med Res ; 9(1): 4, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057868

RESUMEN

BACKGROUND: In sepsis, vitamin D binding protein (VDBP) has been shown to be low-expressed. The current study examined the relationship between serum VDBP level and liver injury in sepsis patients, as well as in a mouse model for sepsis and in cultured liver epithelial cell line exposed to lipopolysaccharide (LPS). METHODS: The human study included 78 sepsis patients and 50 healthy volunteers. Sepsis patients were categorized into sepsis survivor group (n = 43) and sepsis non-survivor group (n = 35) based on 28-day mortality for data analysis. Adult male C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Serum samples were collected on day 1, 3, 5 and 7 to determine the levels of VDBP, 25-hydroxyvitamin D [25(OH)D3], 1,25-dihydroxyvitamin D [1,25(OH)2D3], interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Potential protective effects of VDBP overexpression against LPS-induced liver damage were examined in cultured THLE2 cells. RESULTS: Serum levels of VDBP, 25(OH)D3, and 1,25(OH)2D3 were significantly lower in sepsis patients vs. the healthy control (P < 0.001), as well as in the sepsis non-survivor group vs. the sepsis survivor group (P < 0.001, P = 0.0338, or P = 0.0013, respectively). Lower serum VDBP level was associated with higher Acute Physiology and Chronic Health Evaluation (APACHE) II score (r = - 0.2565, P = 0.0234) and Sequential Organ Failure Assessment score (r = - 0.3522, P = 0.0016), but lower serum albumin (ALB, r = 0.4628, P < 0.001) and total protein (TP, r = 0.263, P = 0.02). In CLP mice, there was a 5-day period of serum VDBP reduction, followed by return towards the baseline on day 7. VDBP was also decreased in LPS-treated THLE2 cells (P < 0.001). VDBP overexpression reduced LPS-induced THLE2 damage. Reduced damage was associated with decreased oxidative stress and inactivation of the c-Jun N-terminal kinase signaling pathway. CONCLUSION: VDBP may be protective against sepsis-induced liver injury.


Asunto(s)
Hígado , Sepsis , Proteína de Unión a Vitamina D , Animales , Humanos , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Sepsis/complicaciones , Sepsis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína de Unión a Vitamina D/metabolismo
18.
J Med Chem ; 65(8): 6001-6016, 2022 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-35239336

RESUMEN

3,3-Disubstituted oxetanes have been utilized as bioisosteres for gem-dimethyl and cyclobutane functionalities. We report the discovery of a novel class of oxetane indole-amine 2,3-dioxygenase (IDO1) inhibitors suitable for Q3W (once every 3 weeks) oral and parenteral dosing. A diamide class of IDO inhibitors was discovered through an automated ligand identification system (ALIS). Installation of an oxetane and fluorophenyl dramatically improved the potency. Identification of a biaryl moiety as an unconventional amide isostere addressed the metabolic liability of amide hydrolysis. Metabolism identification (Met-ID)-guided target design and the introduction of polarity resulted in the discovery of potent IDO inhibitors with excellent pharmacokinetic (PK) profiles in multiple species. To enable rapid synthesis of the key oxetane intermediate, a novel oxetane ring cyclization was also developed, as well as optimization of a literature route on kg scale. These IDO inhibitors may enable unambiguous proof-of-concept testing for the IDO1 inhibition mechanism for oncology.


Asunto(s)
Inhibidores Enzimáticos , Éteres Cíclicos , Amidas , Ciclización , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo
19.
Inorg Chem ; 50(21): 11162-72, 2011 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-21999524

RESUMEN

The [3 + 2] cycloaddition reaction of C(60) with ethyl isonicotinoylacetate in the presence of piperidine in PhCl at room temperature or in the presence of Mn(OAc)(3) in refluxing PhCl gave the pyridyl-containing dihydrofuran-fused C(60) derivative (4-C(5)H(4)N)C(O)═C(C(60))CO(2)Et (1), whereas the phenyl-containing C(60) derivative PhC(O)═C(C(60))CO(2)Et (2) was similarly prepared by [3 + 2] cycloaddition reaction of C(60) with ethyl benzoylacetate in the presence of piperidine or Mn(OAc)(3). More interestingly, one of the new porphyrin-fullerene dyads, i.e., [4-C(5)H(4)NC(O)═C(C(60))CO(2)Et]·ZnTPPH (3, ZnTPPH = tetraphenylporphyrinozinc), could be prepared by coordination reaction of the pyridyl-containing C(60) derivative 1 with equimolar ZnTPPH in CS(2)/hexane at room temperature. In addition, the ß-keto ester-substituted porphyrin derivative H(2)TPPC(O)CH(2)CO(2)Et (4) was prepared by a sequential reaction of HO(2)CCH(2)CO(2)Et with n-BuLi in 1:2 molar ratio followed by treatment with H(2)TPPC(O)Cl in the presence of Et(3)N and then hydrolysis with diluted HCl, whereas the porphyrinozinc derivative ZnTPPC(O)CH(2)CO(2)Et (5) could be prepared by coordination reaction of 4 with Zn(OAc)(2) in refluxing CHCl(3)/MeOH. Particularly interesting is that the second new porphyrin-fullerene dyad H(2)TPPC(O)═C(C(60))CO(2)Et (6) could be prepared by [3 + 2] cycloaddition reaction of 4 with C(60) in the presence of piperidine in PhCl at room temperature. In addition, treatment of 6 with Zn(OAc)(2) in refluxing CHCl(3)/MeOH afforded the third new dyad ZnTPPC(O)═C(C(60))CO(2)Et (7). All the new compounds 1-7 were characterized by elemental analysis and various spectroscopic methods and particularly for 2, 3, and 5 by X-ray crystallography. The five-component system consisting of an electron donor EDTA, dyad 3, an electron mediator methylviologen (MV(2+)), the catalyst colloidal Pt, and a proton source HOAc was proved to be effective for photoinduced H(2) evolution. A possible pathway for such a type of H(2) evolution was proposed.

20.
Front Genet ; 12: 653725, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34354732

RESUMEN

Angiotensin-converting enzyme 2 (ACE2) is an aminopeptidase that functions as a part of the renin-angiotensin system (RAS). The RAS pathway plays a crucial role in regulating the local blood flow within a tissue. As a consequence, the role of ACE2 in regulating vasculature properties has been widely appreciated. Additionally, ACE2 has also been reported to show anti-tumorigenic activity. However, the mechanistic basis of this function has remained largely unexplored. In the current study, using a lentivirus-based expression system in lung cancer cells (A549), we show that ACE2 overexpression reduces the viability and migratory potential of cancer cells, highlighting the robust anti-tumorigenic effects of ACE2 function. Moreover, a quantitative proteome-level comparison between ACE2 overexpressed (OE) and empty vector-controlled (NC) cells reveals a large number (227) of differentially expressed proteins (DEPs) that may have contributed to this phenomenon. Functional enrichment of these DEPs has uncovered that most of them perform binding activities and enzymatic reactions associated with metabolic pathways and various post-transcriptional gene expression regulatory mechanisms. Besides, cellular component analysis reveals that the DEPs function across a range of compartments within a cell with a relatively heterogeneous distribution. Our study, therefore, supports the previously established anti-tumorigenic effects of ACE2 overexpression in lung cancer cells. An analysis based on comprehensive, unbiased, and quantitative proteomics, we have provided a rigorous mechanistic explanation for its functions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA