Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 144: 109283, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38092094

RESUMEN

L-type lectins (LTLs) contain a carbohydrate recognition domain homologous to leguminous lectins, and have functions in selective protein trafficking, sorting and targeting in the secretory pathway of animals. In this study, a novel LTL, designated as ToERGIC-53, was cloned and identified from obscure puffer Takifugu obscurus. The open reading frame of ToERGIC-53 contained 1554 nucleotides encoding 517 amino acid residues. The deduced ToERGIC-53 protein consisted of a signal peptide, a leguminous lectin domain (LTLD), a coiled-coil region, and a transmembrane region. Quantitative real-time PCR showed that ToERGIC-53 was expressed in all examined tissues, with the highest expression level in the liver. The expression of ToERGIC-53 was significantly upregulated after infection with Vibrio harveyi and Staphylococcus aureus. Recombinant ToERGIC-53-LTLD (rToERGIC-53-LTLD) protein could not only agglutinate and bind to one Gram-positive bacterium (S. aureus) and three Gram-negative bacteria (V. harveyi, V. parahaemolyticus and Aeromonas hydrophila), but also bind to glycoconjugates on the surface of bacteria such as lipopolysaccharide, peptidoglycan, mannose and galactose. In addition, rToERGIC-53-LTLD inhibited the growth of bacteria in vitro. All these results suggested that ToERGIC-53 might be a pattern recognition receptor involved in antibacterial immune response of T. obscurus.


Asunto(s)
Infecciones Bacterianas , Lectinas , Animales , Lectinas/genética , Takifugu/genética , Takifugu/metabolismo , Staphylococcus aureus/metabolismo , Receptores de Reconocimiento de Patrones/genética , Filogenia , Inmunidad Innata/genética , Lectinas Tipo C/genética
2.
Fish Shellfish Immunol ; 142: 109080, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37748586

RESUMEN

NK-lysins are one of the most abundant antimicrobial peptides produced by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs), and identified as a new class of intrinsically disordered proteins, playing critical roles in the cell-mediated cytotoxicity response, as well as immunomodulatory and antimicrobial activities upon a significant range of pathogens. In the present study, an NK-lysin was identified from Obscure puffer Takifugu obscurus (ToNK-lysin). The open reading frame of ToNK-lysin sequence spans 423 bp, encoding a peptide with 140 amino acids which shares a moderate residue identity (18%-60%) with NK-lysin of mammals and other teleost species. Phylogenetic analysis revealed that ToNK-lysin was most closely related to NK-lysins from the Pleuronectiformes (Bastard halibut Paralichthys olivaceus and Pacific halibut Hippoglossus stenolepis). Comprehensive computational analysis revealed that ToNK-lysin have substantial level of intrinsic disorder, which might be contribute to its multifunction. The transcripts of the ToNK-lysin were detected in multiple examined tissues and most abundant in gills. After bacterial and Poly I:C challenge, the transcriptional levels of ToNK-lysin were significantly up-regulated in the head kidney, liver and spleen at different time points. The recombinant ToNK-lysin showed significant antibacterial activity against Vibrio harveyi and Escherichia coli, and the ToNK-lysin treatment not only reduced the bacterial loads in liver and head kidney, but also alleviated the pathogen-mediated upregulation of immune-related genes. In addition, the co-incubation with rToNK-lysin protein remarkably degraded bacterial genomic DNA, suggesting the potential mechanism of ToNK-lysin against microbes. These results suggest that ToNK-lysin possess antibacterial and immunoregulatory function both in vivo and in vitro, which may allow it a potential applicability to the aquaculture industry.


Asunto(s)
Antibacterianos , Tetraodontiformes , Animales , Secuencia de Aminoácidos , Filogenia , Antibacterianos/farmacología , Adyuvantes Inmunológicos , Factores Inmunológicos/farmacología , Proteolípidos/genética , Mamíferos/metabolismo
3.
Fish Shellfish Immunol ; 122: 306-315, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35176468

RESUMEN

Proliferating cell nuclear antigen (PCNA) is a crucial eukaryotic replication accessory factor in the regulation of DNA synthesis, which is always used as a proliferation marker for haematopoiesis in vertebrates. In the present study, a homologue of PCNA (named as CgPCNA) with a conserved N-terminal PCNA domain and a C-terminal PCNA domain was identified from oyster Crassostrea gigas. The deduced amino acid sequence of CgPCNA shared 85.4% and 86.6% similarities with the PCNAs identified in Mus musculus and Homo sapiens, respectively. CgPCNA was firstly clustered with PCNAs from molluscs, and then with PCNAs from arthropods to form a group falling into the invertebrate clade in the phylogenic tree. The mRNA transcripts of CgPCNA were detected in all tested tissues with higher expression level in gonad, gills and haemolymph. They were also detected in granulocytes, semi-granulocytes and agranulocytes with no significant differences, but the protein level of CgPCNA in agranulocytes was significantly higher (3.67-fold, p < 0.05) than that in granulocytes. In the haemocytes, CgPCNA was mainly distributed in the nucleus and less in the cytoplasm of haemocytes. CgPCNA protein was observed at the tubule lumen regions of gills vessels, and especially colocalized with the EdU signals. After lipopolysaccharide (LPS) and Vibrio splendidus stimulation, the expression level of CgPCNA mRNA in haemocytes was significantly (p < 0.05) up-regulated at 6 h and 12 h, which was 13.87-fold and 3.89-fold of that in control, respectively. In the oysters treated with the recombinant protein CgAstakine (rCgAstakine), the protein abundance of CgPCNA was enhanced in agranulocytes and gills, while no significant change was observed in semi-granulocytes and granulocytes. These results collectively indicated that CgPCNA was highly expressed in the newborn agranulocytes and the potential haematopoietic sites, and it might be applied as a marker for haemocytes proliferation in oysters.


Asunto(s)
Crassostrea , Enfermedades de los Roedores , Vibriosis , Animales , Crassostrea/genética , Hemocitos/metabolismo , Inmunidad Innata , Ratones , Antígeno Nuclear de Célula en Proliferación/genética , Enfermedades de los Roedores/metabolismo
4.
Fish Shellfish Immunol ; 123: 85-93, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35245670

RESUMEN

Astakine is considered as an endogenous cytokine-like factor of prokineticin homologue in invertebrate. Recently, an astakine homologue (CgAstakine) has been identified and characterized in oyster Crassostrea gigas. In the present study, a CgATP synthase ß subunit was identified as the receptor of CgAstakine in C. gigas. There was an ATP-synt_ab_N domain and an AAA domain in the CgATP synthase ß subunit protein. The mRNA transcripts of CgATP synthase ß subunit were detected in all tested tissues, with the highest expression level in hepatopancreas and gills, which was 109.11-fold (p < 0.01) and 97.21-fold (p < 0.01) of that in labial palps, respectively. After rCgAstakine stimulation, the mRNA transcripts of CgATP synthase ß subunit in agranulocytes and semi-granulocytes were significantly increased at 24 h (2.44-fold, and 9.01-fold of that in control group, p < 0.01), and those in granulocytes were significantly increased at 6 h (1.83-fold, p < 0.01), 12 h (1.92-fold, p < 0.01) and 24 h (3.47-fold, p < 0.01). The expression level of CgATP synthase ß subunit protein in agranulocytes and granulocytes was also significantly increased after rCgAstakine stimulation, which was 1.64-fold (p < 0.05) and 1.85-fold (p < 0.05) of that in control group, respectively, while there were no significant changes in semi-granulocytes. The immunofluorescence assay showed that CgATP synthase ß subunit positive signals were mainly located on the membrane of haemocytes. The number of haemocytes with EdU positive signals was significantly increased after rCgAstakine stimulation (2.04-fold of seawater group, p < 0.01), while significantly decreased after the RNA interference (RNAi) of CgATP synthase ß subunit, which was 0.28-fold of that in NC group (p < 0.01). Bio-layer interferometry (BLI) assay confirmed in vitro interaction between rCgAstakine and rCgATP synthase ß subunit. There results suggested that CgATP synthase ß subunit acts as the receptor of CgAstakine and plays important roles in CgAstakine induced renewal of haemocytes in C. gigas.


Asunto(s)
Crassostrea , Animales , Proliferación Celular , Crassostrea/genética , Crassostrea/metabolismo , Hemocitos/metabolismo , Inmunidad Innata , ARN Mensajero/metabolismo
5.
BMC Infect Dis ; 22(1): 724, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068499

RESUMEN

BACKGROUND: Mycoplasma pneumoniae can be divided into different subtypes on the basis of the sequence differences of adhesive protein P1, but the relationship between different subtypes, macrolide resistance and clinical manifestations are still unclear. In the present study, we established a molecular beacon based real-time polymerase chain reaction (real-time PCR) p1 gene genotyping method, analyzed the macrolide resistance gene mutations and the relationship of clinical characteristics with the genotypes. METHODS: A molecular beacon based real-time PCR p1 gene genotyping method was established, the mutation sites of macrolide resistance genes were analyzed by PCR and sequenced, and the relationship of clinical characteristics with the genotypes was analyzed. RESULTS: The detection limit was 1-100 copies/reaction. No cross-reactivity was observed in the two subtypes. In total, samples from 100 patients with positive M. pneumoniae detection results in 2019 and 2021 were genotyped using the beacon based real-time PCR method and P1-1 M. pneumoniae accounted for 69.0%. All the patients had the A2063G mutation in the macrolide resistance related 23S rRNA gene. Novel mutations were also found, which were C2622T, C2150A, C2202G and C2443A mutations. The relationship between p1 gene genotyping and the clinical characteristics were not statistically related. CONCLUSION: A rapid and easy clinical application molecular beacon based real-time PCR genotyping method targeting the p1 gene was established. A shift from type 1 to type 2 was found and 100.0% macrolide resistance was detected. Our study provided an efficient method for genotyping M. pneumoniae, valuable epidemiological monitoring information and clinical treatment guidance to control high macrolide resistance.


Asunto(s)
Neumonía por Mycoplasma , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Niño , Farmacorresistencia Bacteriana/genética , Genotipo , Humanos , Macrólidos/farmacología , Macrólidos/uso terapéutico , Mutación , Mycoplasma pneumoniae/genética , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/tratamiento farmacológico , ARN Ribosómico 23S/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
J Appl Toxicol ; 42(10): 1688-1700, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35560222

RESUMEN

The antiviral drug remdesivir has been used to treat the growing number of coronavirus disease 2019 (COVID-19) patients. However, the drug is mainly excreted through urine and feces and introduced into the environment to affect non-target organisms, including fish, which has raised concerns about potential ecotoxicological effects on aquatic organisms. Moreover, studies on the ecological impacts of remdesivir on aquatic environments have not been reported. Here, we aimed to explore the toxicological impacts of microinjection of remdesivir on zebrafish early embryonic development and larvae and the associated mechanism. We found that 100 µM remdesivir delayed epiboly and impaired convergent movement of embryos during gastrulation, and dose-dependent increases in mortality and malformation were observed in remdesivir-treated embryos. Moreover, 10-100 µM remdesivir decreased blood flow and swimming velocity and altered the behavior of larvae. In terms of molecular mechanisms, 80 differentially expressed genes (DEGs) were identified by transcriptome analysis in the remdesivir-treated group. Some of these DEGs, such as manf, kif3a, hnf1ba, rgn, prkcz, egr1, fosab, nr4a1, and ptgs2b, were mainly involved in early embryonic development, neuronal developmental disorders, vascular disease and the blood flow pathway. These data reveal that remdesivir can impair early embryonic development, blood flow and behavior of zebrafish embryos/larvae, probably due to alterations at the transcriptome level. This study suggests that it is important to avoid the discharge of remdesivir to aquatic ecosystems and provides a theoretical foundation to hinder remdesivir-induced ecotoxicity to aquatic environments.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Contaminantes Químicos del Agua , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Ecosistema , Embrión no Mamífero , Factor Nuclear 1-beta del Hepatocito/metabolismo , Factor Nuclear 1-beta del Hepatocito/farmacología , Larva , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Proteínas de Pez Cebra/metabolismo
7.
Microb Pathog ; 139: 103925, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31838175

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important intracellular pathogen, causing gastroenteritis or severe systemic infection in a variety of hosts. During infection, S. Typhimurium must survive and replicate in host macrophages, which produce abundant oxidative compounds. SoxRS regulon is a well-known regulator that is activated in response to oxidative stress and promotes bacterial tolerance to oxidants in E. coli. However, the global regulatory function of SoxS in S. Typhimurium remains poorly characterized. Here, we used an RNA sequencing-based approach to investigate the role of SoxS in the expression of S. Typhimurium virulence genes. Besides the downregulation of genes related to resistance to oxidative stress, we found that in a soxS deletion mutant the expression of Salmonella pathogenicity island (SPI)-2 genes, which are crucial for replication within macrophages, was significantly repressed. Moreover, immunofluorescence and mice infection experiments showed that soxS deletion inhibited replication in macrophages and decreased virulence upon intraperitoneal inoculation in mice, respectively. Collectively, our findings demonstrate that SoxS is a positive regulator of SPI-2 genes and, therefore, plays a crucial role in S. Typhimurium intracellular replication and virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/metabolismo , Transactivadores/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Humanos , Ratones , Ratones Endogámicos BALB C , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/patogenicidad , Transactivadores/genética , Virulencia
8.
Int Microbiol ; 23(3): 381-390, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31832871

RESUMEN

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important gram-negative intracellular pathogen that infects humans and animals. More than 50 putative regulatory proteins have been identified in the S. Typhimurium genome, but few have been clearly defined. In this study, the physiological function and regulatory role of STM14_3563, which encodes a ParD family putative transcriptional regulator in S. Typhimurium, were investigated. Macrophage replication assays and mice experiments revealed that S. Typhimurium showed reduced growth in murine macrophages and attenuated virulence in mice owing to deletion of STM14_3563 gene. RNA sequencing (RNA-Seq) data showed that STM14_3563 exerts wide-ranging effects on gene expression in S. Typhimurium. STM14_3563 activates the expression of several genes encoded in Salmonella pathogenicity island (SPI)-6, SPI-12, and SPI-13, which are required for intracellular replication of S. Typhimurium. Additionally, the global transcriptional regulator Fis was found to directly activate STM14_3563 expression by binding to the STM14_3563 promoter. These results indicate that STM14_3563 is involved in the regulation of a variety of virulence-related genes in S. Typhimurium that contribute to its growth in macrophages and virulence in mice.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Salmonella typhimurium , Factores de Transcripción/genética , Virulencia/genética , Animales , Regulación Bacteriana de la Expresión Génica , Islas Genómicas/genética , Macrófagos/microbiología , Ratones , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Transcriptoma/genética , Factores de Virulencia/genética
9.
Fish Shellfish Immunol ; 89: 228-236, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30936046

RESUMEN

The Runx family is a kind of heteromeric transcription factors, which is defined by the presence of a runt domain. As transcriptional regulator during development and cell fate specification, Runx is best known for its critical roles in hematopoiesis. In the present study, a Runx transcription factor (designed as CgRunx) was identified and characterized from the oyster Crassostrea gigas. The complete coding sequence of CgRunx was of 1638 bp encoding a predicted polypeptide of 545 amino acids with one conserved runt domain, which shared high similarity with other reported Runx proteins. CgRunx was highly expressed in hemocytes, gill and mantle both at the protein and nucleic acid levels. CgRunx protein was localized specifically in the cell nuclei of hemocytes, and distributed at the tubule lumen of gill filament. During the larval developmental stages, the mRNA transcripts of CgRunx gradually increased after fertilization, reached to a relative high level at the 8 cell embryos and the blastula stage of 2-4 hpf (hours post fertilization) (about 40-fold), and peaked at early trochophore larvae (10 hpf) (about 60-fold). Whole-mount immunofluorescence assay further revealed that the abundant immunofluorescence signals of CgRunx distributed through the whole embryo at blastula stage (5 hpf), and progressively reduced with the development to a ring structure around the dorsal region in trochophore larvae (10 hpf). Scattered positive immunoreactivity signals finally appeared in the velum region of D-veliger larvae. After LPS and Vibrio splendidus stimulations, the expression levels of CgRunx mRNA in hemocytes were up-regulated significantly compared with that in the control (0 h), which were 2.98- and 2.46-fold (p < 0.05), 2.67- and 1.5-fold (p < 0.05), 2.36- and 1.38-fold (p < 0.05) at 3 h, 6 h and 12 h, respectively. These results collectively suggested that CgRunx involved in immune response and might participate in larvae hematopoiesis in oyster.


Asunto(s)
Subunidades alfa del Factor de Unión al Sitio Principal/genética , Subunidades alfa del Factor de Unión al Sitio Principal/inmunología , Crassostrea/genética , Crassostrea/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Subunidades alfa del Factor de Unión al Sitio Principal/química , Perfilación de la Expresión Génica , Alineación de Secuencia
10.
Fish Shellfish Immunol ; 92: 772-781, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31279080

RESUMEN

C-type lectins (CTLs), as important pattern recognition receptors (PRRs), are a superfamily of Ca2+-dependent carbohydrate-recognition proteins which participate in nonself-recognition and eliminating pathogens. In the present study, a novel CTL (designated as CgCLec-3) was identified from the Pacific oyster Crassostrea gigas. There was only one carbohydrate-recognition domain (CRD) of 151 amino acid residues within the deduced amino acid sequence of CgCLec-3. The deduced amino acid sequence of CgCLec-3 CRD shared low homology with the CRDs of other CTLs in oyster with the identities ranging from 12% to 22%. A novel DIN motif was found in Ca2+-binding site 2 of CgCLec-3. The relative expression level of CgCLec-3 in hemocytes was up-regulated significantly after the stimulations of bacteria and Pathogen Associated Molecular Patterns (PAMPs). Immunohistochemistry assay showed that CgCLec-3 protein was mainly distributed in gill and mantle, less in gonad, and could not be detected in adductor muscle and hepatopancreas. The recombinant protein (rCgCLec-3) could bind lipopolysaccharide (LPS), mannose (MAN) and peptidoglycan (PGN), but not poly (I:C). rCgCLec-3 exihibited strong binding ability to Vibrio anguillarum and V. splendidus, moderate binding activities to Escherichia coli, Pichia pastoris and Yarrowia lipolytica, weak binding affinity to Staphylococcus aureus and Micrococcus luteus. rCgCLec-3 could agglutinate microorganisms, in a Ca2+-dependent manner and its activity to agglutinate V. splendidus was remarkably higher than that to agglutinate E. coli, S. aureus and P. pastoris. The phagocytic activity of oyster hemocytes was significantly enhanced after incubation with rCgCLec-3. rCgCLec-3 also exhibited antibacterial activity against E. coli and S. aureus. The results clearly suggested that CgCLec-3 in Pacific oyster C. gigas not only served as a PRR involved in the PAMPs recognition and microbes binding, but also functioned as an immune effector participating in the clearance of invaders.


Asunto(s)
Crassostrea/genética , Crassostrea/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/inmunología , Secuencia de Aminoácidos , Animales , Hongos/fisiología , Perfilación de la Expresión Génica , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Lectinas Tipo C/química , Alineación de Secuencia
11.
Fish Shellfish Immunol ; 87: 96-104, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30633961

RESUMEN

Granulocytes are known as the main immunocompetent hemocytes that play important roles in the immune defense of oyster Crassostrea gigas. In the present study, an alcohol acyltransferase (designed as CgAATase) with specific expression pattern was identified from oyster C. gigas, and it could be employed as a potential marker for the isolation of oyster granulocytes. The open reading frame (ORF) of CgAATase was of 1431 bp, encoding a peptide of 476 amino acids with a typically conserved AATase domain. The mRNA transcripts of CgAATase were highest expressed in hemocytes, lower expressed in hepatopancreas, mantle, gonad, gill, ganglion, adductor muscle, and labial palp. The mRNA expression level of CgAATase in hemocytes was significantly up-regulated at 3-12 h and reached the highest level (27.40-fold compared to control group, p < 0.05) at 6 h after Vibrio splendidus stimulation. The total hemocytes were sorted as granulocytes, semi-granulocytes and agranulocytes by Percoll® density gradient centrifugation. CgAATase transcripts were dominantly observed in granulocytes, which was 8.26-fold (p < 0.05) and 2.80-fold (p < 0.05) of that in agranulocytes and semi-granulocytes, respectively. The monoclonal antibody against CgAATase was produced and employed for the isolation of granulocytes with the immunomagnetic bead. CgAATase protein was mainly detected on the cytomembrane of granulocytes. About 85.7 ±â€¯4.60% of the granulocytes were positive for CgAATase and they could be successfully separated by flow cytometry with immunomagnetic bead coated with anti-CgAATase monoclonal antibody, and 97.7 ±â€¯1.01% of the rest hemocytes (agranulocytes and semi-granulocytes) were negative for CgAATase. The isolated primary granulocytes could maintain cell activity for more than one week in vitro culture that exhibited numerous filopodia. These results collectively suggested that CgAATase was a potential marker of oyster granulocytes, and the granulocytes could be effectively isolated from total circulating hemocytes by immunomagnetic bead coated with the anti-CgAATase monoclonal antibody.


Asunto(s)
Crassostrea/inmunología , Granulocitos/inmunología , Proteínas/metabolismo , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Crassostrea/citología , Crassostrea/enzimología , Citometría de Flujo/métodos , Granulocitos/citología , Granulocitos/enzimología , Hemocitos/citología , Separación Inmunomagnética/métodos , Proteínas/genética , Vibrio/inmunología
12.
Fish Shellfish Immunol ; 84: 587-598, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30336283

RESUMEN

The mitochondrial pathway of apoptosis is well studied as the major mechanism of physiological cell death in vertebrates. In the present study, a second mitochondria-derived activator of caspases (Smac)/direct inhibitor of apoptosis-binding protein (IAP) with low pI protein (DIABLO) (designated as CgSmac) was identified from oyster Crassostrea gigas. The open reading frame of CgSmac was of 966 bp nucleotides encoding a predicted polypeptide of 321 amino acids with a conserved Smac/DIABLO domain containing a potential IAP-binding motif of VMPV. CgSmac proteins were distributed in hemocytes and co-localized with mitochondria. Western blotting analysis revealed that CgSmac proteins mainly existed in the dimer form in hemocytes, and the monomeric precursors and mature monomers were also detected. After lipopolysaccharide (LPS) stimulation, the mRNA expression of CgSmac in hemocytes was significantly up-regulated and peaked at 6 h (12.26-fold, p < 0.05), and the protein level of its dimers was significantly up-regulated at 6 h, 12 h, 24 h, and 48 h, while that of CgSmac monomers was up-regulated at 6 h, 12 h and down-regulated at 24 h, 48 h. The decrease of mitochondrial membrane potential indicated that the occurrence of early stage of apoptosis in primary cultured hemocytes was induced by LPS, and RNA interference (RNAi) of CgSmac could not rescue this decrease. The caspase-3 activity in primary cultured hemocytes was significantly suppressed after RNAi of CgSmac. Correspondingly, the total apoptotic rate of primary cultured hemocytes was also significantly suppressed in dsCgSmac + LPS group (31.57%) compared to dsEGFP + LPS group (40.27%, p < 0.05), which in turn demonstrated the conserved pro-apoptotic function of CgSmac. Furthermore, the early apoptotic rate (10.4% vs. 8.5%, p < 0.05) was significantly higher in dsCgSmac + LPS group than that of dsEGFP + LPS group, while the necrosis (7.7% vs. 10.0%, p < 0.05) and late apoptotic rates (13.4% vs. 21.9%, p < 0.05) were lower in dsCgSmac + LPS group than those of dsEGFP + LPS group. Collectively, CgSmac could activate mitochondrial apoptosis pathway by promoting caspase-3 activity in oyster hemocytes against exogenous LPS invasion. These results provided new insights on oyster apoptosis and the immune defense mechanisms in invertebrates.


Asunto(s)
Apoptosis/efectos de los fármacos , Crassostrea/genética , Crassostrea/inmunología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/inmunología , Mitocondrias/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Secuencia de Bases , Péptidos y Proteínas de Señalización Intracelular/química , Lipopolisacáridos/farmacología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/inmunología , Alineación de Secuencia
13.
J Basic Microbiol ; 59(11): 1143-1153, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31577373

RESUMEN

Salmonella enterica serovar Typhimurium (S. Tm) is a major intracellular pathogen that infects humans and animals, and its survival and growth in macrophages is essential for its pathogenicity. More than 50 putative regulatory proteins are encoded by the S. Tm genome, but the functions of these regulatory proteins in mediating S. Tm pathogenicity are largely unknown. In this study, we investigated the biological function of the STM0030 gene, which encodes a putative LysR-type transcriptional regulator. We found that STM0030 is upregulated 2.8-5.7-fold during S. Tm growth in macrophages. Further, mutating this gene decreased bacterial growth in macrophages and attenuated virulence in mice. RNA-sequencing to investigate the regulatory function of STM0030 in S. Tm revealed that 447 genes were differentially expressed between the mutant and the wild-type strains; 429 of these genes were downregulated, suggesting that STM0030 mainly acts as a transcriptional activator. Moreover, the expression of gluconate, maltose, and hexose-p transport genes, as well as allantoin utilization genes were downregulated in the STM0030 mutant; this might be associated with the observed decrease in intracellular replication and pathogenicity of the mutant. Our findings suggest that STM0030 is a new pathogenicity-associated regulatory protein that broadens our understanding of the virulence regulatory network of S. Tm.


Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella typhimurium/patogenicidad , Factores de Transcripción/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Mutación , Células RAW 264.7 , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Factores de Transcripción/genética , Virulencia , Factores de Virulencia/genética
14.
Int J Mol Sci ; 20(18)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487966

RESUMEN

Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that infects humans and animals. Survival and growth in host macrophages represents a crucial step for S. Typhimurium virulence. Many genes that are essential for S. Typhimurium proliferation in macrophages and associated with virulence are highly expressed during the intracellular lifecycle. yaeB, which encodes an RNA methyltransferase, is also upregulated during S. Typhimurium growth in macrophages. However, the involvement of YaeB in S. Typhimurium pathogenicity is still unclear. In this study, we investigated the role of YaeB in S. Typhimurium virulence. Deletion of yaeB significantly impaired S. Typhimurium growth in macrophages and virulence in mice. The effect of yaeB on pathogenicity was related to its activation of pstSCAB, a phosphate (Pi)-specific transport system that is verified here to be important for bacterial replication and virulence. Moreover, qRT-PCR data showed YaeB was induced by the acidic pH inside macrophages, and the acidic pH passed to YeaB through inhibiting global regulator histone-like nucleoid structuring (H-NS) which confirmed in this study can repress the expression of yaeB. Overall, these findings identified a new virulence regulatory network involving yaeB and provided valuable insights to the mechanisms through which acidic pH and low Pi regulate virulence.


Asunto(s)
Proteínas Bacterianas/metabolismo , Salmonella typhimurium/patogenicidad , ARNt Metiltransferasas/metabolismo , Animales , Carga Bacteriana , Proteínas Bacterianas/genética , Replicación del ADN , Femenino , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7 , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Virulencia/genética , ARNt Metiltransferasas/genética
15.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 36(4): 649-656, 2019 Aug 25.
Artículo en Zh | MEDLINE | ID: mdl-31441267

RESUMEN

Based on the noninvasive detection indeices and fuzzy mathematics method, this paper studied the noninvasive, convenient and economical cardiovascular health assessment system. The health evaluation index of cardiovascular function was built based on the internationally recognized risk factors of cardiovascular disease and the noninvasive detection index. The weight of 12 indexes was completed by the analytic hierarchy process, and the consistency test was passed. The membership function, evaluation matrix and evaluation model were built by fuzzy mathematics. The introducted methods enhanced the scientificity of the evaluation system. Through the Kappa consistency test, McNemer statistical results ( P = 0.995 > 0.05) and Kappa values (Kappa = 0.616, P < 0.001) suggest that the comprehensive evaluation results of model in this paper are relatively consistent with the clinical, which is of certain scientific significance for the early detection of cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico , Sistema Cardiovascular , Lógica Difusa , Modelos Cardiovasculares , Humanos , Investigación
16.
Fish Shellfish Immunol ; 74: 363-371, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29325712

RESUMEN

GATA transcription factor is a family of DNA-binding proteins that can recognize and bind to sequence of (A/T) GATA (A/G). In the present study, a GATA-like protein (named as EsGLP) was characterized from Eriocheir sinensis, including an 834 bp full length open reading frame of EsGLP, encoding a polypeptide of 277 amino acids. The deduced amino acid sequence of EsGLP contained one conserved GATA-type zinc finger of the form Cys-X2-Cys-X17-Cys-X2-Cys, with four cysteine sites. The EsGLP mRNA transcripts were mainly detected in the hematopoietic tissue, hepatopancreas and gonad. The recombinant EsGLP protein was prepared for the antibody production. The EsGLP protein was mainly distributed in the edge of lobules in the HPT and the cytoplasm of hemocytes. The mRNA transcripts of EsGLP in hemocytes were significantly decreased at 24 h (0.39-fold and 0.27-fold, p < .05) and 48 h (0.35-fold and 0.16-fold, p < .05) after LPS and Aeromonas hydrophila stimulation, respectively. However, one peak of EsGLP mRNA transcripts were recorded at 24 h (8.71-fold, p < .05) in HPT after A. hydrophila stimulation. The expression level of EsGLP mRNA in HPT was significantly up-regulated at 2 h, 2.5 h and 9 h (41.74-fold, 45.38-fold and 26.07-fold, p < .05) after exsanguination stimulation. When EsGLP gene expression was inhibited by the injection of double-stranded RNA, both the total hemocytes counts and the rate of EdU-positive hemocytes were significantly decreased (0.32-fold and 0.56-fold compared to that in control group, p < .05). All these results suggested that EsGLP was an important regulatory factor in E. sinensis which involved in the hemocytes generation and the immune response against invading pathogens.


Asunto(s)
Braquiuros/genética , Braquiuros/inmunología , Factores de Transcripción GATA/genética , Factores de Transcripción GATA/inmunología , Regulación de la Expresión Génica/inmunología , Hematopoyesis/genética , Inmunidad Innata/genética , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Factores de Transcripción GATA/química , Perfilación de la Expresión Génica , Filogenia , Distribución Aleatoria , Alineación de Secuencia , Dedos de Zinc/inmunología
17.
Int J Mol Sci ; 19(3)2018 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-29510476

RESUMEN

Self-nonself discrimination is a common theme for all of the organisms in different evolutionary branches, which is also the most fundamental step for host immune protection. Plenty of pattern recognition receptors (PRRs) with great diversity have been identified from different organisms to recognize various pathogen-associated molecular patterns (PAMPs) in the last two decades, depicting a complicated scene of host-pathogen interaction. However, the detailed mechanism of the complicate PAMPs-PRRs interactions at the contacting interface between pathogens and hosts is still not well understood. All of the cells are coated by glycosylation complex and thick carbohydrates layer. The different polysaccharides in extracellular matrix of pathogen-host are important for nonself recognition of most organisms. Coincidentally, massive expansion of PRRs, majority of which contain recognition domains of Ig, leucine-rich repeat (LRR), C-type lectin (CTL), C1q and scavenger receptor (SR), have been annotated and identified in invertebrates by screening the available genomic sequence. The phylum Mollusca is one of the largest groups in the animal kingdom with abundant biodiversity providing plenty of solutions about pathogen recognition and immune protection, which might offer a suitable model to figure out the common rules of immune recognition mechanism. The present review summarizes the diverse PRRs and common elements of various PAMPs, especially focusing on the structural and functional characteristics of canonical carbohydrate recognition proteins and some novel proteins functioning in molluscan immune defense system, with the objective to provide new ideas about the immune recognition mechanisms.


Asunto(s)
Inmunidad Innata , Moluscos/inmunología , Polisacáridos Bacterianos/inmunología , Receptores de Reconocimiento de Patrones/inmunología , Animales , Polisacáridos Bacterianos/química
18.
Fish Shellfish Immunol ; 64: 297-307, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28286314

RESUMEN

Oyster Crassostrea gigas is one model mollusc inhabiting in the intertidal zone and is frequently stressed by desiccation. The adaptation mechanism of oyster to environmental stress involves multiple levels, and miRNA is one of the most important regulators in post-transcriptional level. In the present study, an oyster norepinephrine-responsive miRNA cgi-miR-365 was proved to contribute to the host adaptation against desiccation by directly promoting the expression of CgHSP90AA1. Briefly, a significant increase of cgi-miR-365 was observed from the first day after aerial exposure and the up-regulation was vigorously repressed when oysters were injected with adrenoceptors antagonists. A total of 15 genes involved in biological regulation, metabolic process and response to stimulus were predicted to be modulated by cgi-miR-365. Among these genes, CgHSP90AA1 was up-regulated significantly during desiccation and could be down-regulated after simultaneous injection of adrenoceptors antagonists. The interaction between cgi-miR-365 and CgHSP90AA1 was subsequently verified in vitro, and a significant promotion of CgHSP90AA1 transcripts was observed after overexpressing cgi-miR-365 in either in vitro luciferase reporter assay or primarily cultured haemocytes. Meanwhile, CgHSP90AA1 transcripts decreased in vivo when cgi-miR-365 was repressed by its inhibitor during desiccation. Collectively, it was suggested that cgi-miR-365 could be induced by norepinephrine during desiccation and promote CgHSP90AA1 expression directly after binding to its 3'-UTR, which would provide new evidence in miRNA-mediated adaptation mechanism in oysters against intertidal stress.


Asunto(s)
Crassostrea/fisiología , Desecación , Proteínas HSP90 de Choque Térmico/genética , MicroARNs/genética , Agua de Mar , Animales , Crassostrea/genética , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Hemocitos/efectos de los fármacos , MicroARNs/metabolismo , Norepinefrina/farmacología , Distribución Aleatoria , Olas de Marea , Distribución Tisular
19.
Fish Shellfish Immunol ; 62: 341-348, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28159695

RESUMEN

Serotonin, also known as 5-hydroxytryptamine (5-HT), is a critical neurotransmitter in the neuroendocrine-immune regulatory network and involved in regulation of the stress response in vertebrates and invertebrates. In the present study, serotonin was found to be widely distributed in the tissues of Pacific oyster Crassostrea gigas, including haemolymph, gonad, visceral ganglion, mantle, gill, labial palps and hepatopancreas, and its concentration increased significantly in haemolymph and mantle after the oysters were exposed to air for 1 d. The apoptosis rate of haemocytes was significantly declined after the oysters received an injection of extra serotonin, while the activity of superoxide dismutase (SOD) in haemolymph increased significantly. After the stimulation of serotonin during air exposure, the apoptosis rate of oyster haemocytes and the concentration of H2O2 in haemolymph were significantly decreased, while the SOD activity was significantly elevated. Furthermore, the survival rate of oysters from 4th to 6th d after injection of serotonin was higher than that of FSSW group and air exposure group. The results clearly indicated that serotonin could modulate apoptotic effect and redox during air exposure to protect oysters from stress.


Asunto(s)
Aire , Crassostrea/fisiología , Agonistas de Receptores de Serotonina/metabolismo , Serotonina/metabolismo , Animales , Apoptosis , Crassostrea/enzimología , Hemocitos/enzimología , Hemocitos/inmunología , Hemocitos/fisiología , Peróxido de Hidrógeno/metabolismo , Estrés Fisiológico , Superóxido Dismutasa/metabolismo
20.
Fish Shellfish Immunol ; 51: 180-188, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26915307

RESUMEN

Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Crassostrea/genética , Hematopoyesis/genética , Proteínas Proto-Oncogénicas/genética , Animales , Hemocitos/metabolismo , Larva , Filogenia , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA