Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nature ; 568(7750): 70-74, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918403

RESUMEN

As the dimensions of the semiconducting channels in field-effect transistors decrease, the contact resistance of the metal-semiconductor interface at the source and drain electrodes increases, dominating the performance of devices1-3. Two-dimensional (2D) transition-metal dichalcogenides such as molybdenum disulfide (MoS2) have been demonstrated to be excellent semiconductors for ultrathin field-effect transistors4,5. However, unusually high contact resistance has been observed across the interface between the metal and the 2D transition-metal dichalcogenide3,5-9. Recent studies have shown that van der Waals contacts formed by transferred graphene10,11 and metals12 on few-layered transition-metal dichalcogenides produce good contact properties. However, van der Waals contacts between a three-dimensional metal and a monolayer 2D transition-metal dichalcogenide have yet to be demonstrated. Here we report the realization of ultraclean van der Waals contacts between 10-nanometre-thick indium metal capped with 100-nanometre-thick gold electrodes and monolayer MoS2. Using scanning transmission electron microscopy imaging, we show that the indium and gold layers form a solid solution after annealing at 200 degrees Celsius and that the interface between the gold-capped indium and the MoS2 is atomically sharp with no detectable chemical interaction between the metal and the 2D transition-metal dichalcogenide, suggesting van-der-Waals-type bonding between the gold-capped indium and monolayer MoS2. The contact resistance of the indium/gold electrodes is 3,000 ± 300 ohm micrometres for monolayer MoS2 and 800 ± 200 ohm micrometres for few-layered MoS2. These values are among the lowest observed for three-dimensional metal electrodes evaporated onto MoS2, enabling high-performance field-effect transistors with a mobility of 167 ± 20 square centimetres per volt per second. We also demonstrate a low contact resistance of 220 ± 50 ohm micrometres on ultrathin niobium disulfide (NbS2) and near-ideal band offsets, indicative of defect-free interfaces, in tungsten disulfide (WS2) and tungsten diselenide (WSe2) contacted with indium alloy. Our work provides a simple method of making ultraclean van der Waals contacts using standard laboratory technology on monolayer 2D semiconductors.

2.
Small ; : e2307232, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38072768

RESUMEN

This work demonstrates the use of 2D materials (2DMs) as identification tags by exploiting their unique shape. Electrochemical exfoliation enables the production of large quantities of optically accessible 2DMs with diverse morphology and large lateral sizes up to 20 µm. Image processing techniques are used to facilitate shape identification and matching within a dataset of 500 unique nanosheets. Rotational and translation invariant shape matching with no false positive matches between over 100 000 unique shape pairings is shown. The approach enables individual nanosheets to be deposited onto products, such as packaging of luxury goods, pharmaceuticals, banknotes, etc., as a unique seal of authenticity. Quick inspection of the nanoscale tag by optical microscopy allows the shape to be compared against the genuine dataset, enabling unique identification. The optical features of 2D materials, such as Raman and/or photoluminescence signals can be used as an additional chemical fingerprint, making the anticounterfeiting solution very robust.

3.
Nat Mater ; 18(12): 1309-1314, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31451781

RESUMEN

Metallic transition metal dichalcogenides (TMDs)1-8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10-100 mA cm-2) than industrial Pt and Ir electrolysers (>1,000 mA cm-2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of >5,000 mA cm-2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm-2, corresponding to a turnover frequency of ~0.2 s-1. We demonstrate an electrolyser based on a 2H Nb1+xS2 cathode that can generate current densities of 1,000 mA cm-2. Our theoretical results reveal that 2H Nb1+xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+xS2 could be a viable catalyst for practical electrolysers.

4.
Chem Soc Rev ; 47(12): 4242-4257, 2018 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-29717732

RESUMEN

Recent years have witnessed many advances in two-dimensional (2D) hexagonal boron nitride (h-BN) materials in both fundamental research and practical applications. This has ultimately been inspired by the unique electrical and optical properties, as well as the excellent thermal and chemical stability of h-BN. However, controllable and scalable preparation of 2D h-BN materials has been challenging. Very recently, the chemical vapour deposition (CVD) technique has shown great promise for achieving high-quality h-BN samples with excellent layer-number selectivity and large-area uniformity, considerably contributing to the latest advancements of 2D material research. In this tutorial review, we provide a systematic summary of the state-of-the-art in the tailored production of 2D h-BN on various substrates by virtue of CVD routes.

5.
Nano Lett ; 16(10): 6109-6116, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27579486

RESUMEN

Vertical heterostructures based on two-dimensional layered materials, such as stacked graphene and hexagonal boron nitride (G/h-BN), have stimulated wide interest in fundamental physics, material sciences and nanoelectronics. To date, it still remains challenging to obtain high quality G/h-BN heterostructures concurrently with controlled nucleation density and thickness uniformity. In this work, with the aid of the well-defined poly(methyl methacrylate) seeds, effective control over the nucleation densities and locations of graphene domains on the predeposited h-BN monolayers was realized, leading to the formation of patterned G/h-BN arrays or continuous films. Detailed spectroscopic and morphological characterizations further confirmed that ∼85.7% of such monolayer graphene domains were of single-crystalline nature with their domain sizes predetermined throughout seed interspacing. Density functional theory calculations suggested that a self-terminated growth mechanism can be applied for the related graphene growth on h-BN/Cu. In turn, as-constructed field-effect transistor arrays based on such synthesized single-crystalline G/h-BN patterning were found to be compatible with fabricating devices with nice and steady performance, hence holding great promise for the development of next-generation graphene-based electronics.

6.
Nano Lett ; 15(9): 5846-54, 2015 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-26305883

RESUMEN

Direct growth of graphene on traditional glasses is of great importance for various daily life applications. We report herein the catalyst-free atmospheric-pressure chemical vapor deposition approach to directly synthesizing large-area, uniform graphene films on solid glasses. The optical transparency and sheet resistance of such kinds of graphene glasses can be readily adjusted together with the experimentally tunable layer thickness of graphene. More significantly, these graphene glasses find a broad range of real applications by enabling the low-cost construction of heating devices, transparent electrodes, photocatalytic plates, and smart windows. With a practical scalability, the present work will stimulate various applications of transparent, electrically and thermally conductive graphene glasses in real-life scenarios.

7.
Nano Lett ; 14(7): 3832-9, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-24873697

RESUMEN

Early transition metals, especially groups IVB-VIB metals, can form stable carbides, which are known to exhibit excellent "noble-metal-like" catalytic activities. We demonstrate herein the applications of groups IVB-VIB metals in graphene growth using atmospheric pressure chemical vapor deposition technique. Similar to the extensively studied Cu, Ni, and noble metals, these transition-metal foils facilitate the catalytic growth of single- to few-layer graphene. The most attractive advantage over the existing catalysts is their perfect control of layer thickness and uniformity with highly flexible experimental conditions by in situ converting the dissolved carbons into stable carbides to fully suppress the upward segregation/precipitation effect. The growth performance of graphene on these transition metals can be well explained by the periodic physicochemical properties of elements. Our work has disclosed a new territory of catalysts in the periodic table for graphene growth and is expected to trigger more interest in graphene research.

8.
J Am Chem Soc ; 136(18): 6574-7, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24746139

RESUMEN

High-quality monolayer graphene was synthesized on high-κ dielectric single crystal SrTiO3 (STO) substrates by a facile metal-catalyst-free chemical vapor deposition process. The as-grown graphene sample was suitable for fabricating a high performance field-effect transistor (FET), followed by a far lower operation voltage compared to that of a SiO2-gated FET and carrier motilities of approximately 870-1050 cm(2)·V(-1)·s(-1) in air at rt. The directly grown high-quality graphene on STO makes it a perfect candidate for designing transfer-free, energy-saving, and batch production of FET arrays.

9.
Small ; 10(19): 4003-11, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24913919

RESUMEN

The segregation of carbon from metals in which carbon is highly soluble, such as Ni (≈1.1 atom% at 1000 °C), is a typical method for graphene growth; this method differs from the surface-catalyzed growth of graphene that occurs on other metals such as Cu (<0.04 atom%). It has not been established whether strictly monolayer graphene could be synthesized through the traditional chemical vapor deposition route on metals where carbon is highly soluble, such as Pd (≈3.5 atom%). In this work, this issue is investigated by suppressing the grain boundary segregation using a pretreatment comprising the annealing of the Pd foils; this method was motivated by the fact that the typical thick growths at the grain boundaries revealed that the grain boundary functions as the main segregation channel in polycrystalline metals. To evaluate the high crystallinity of the as-grown graphene, detailed atomic-scale characterization with scanning tunneling microscopy is performed.

10.
Adv Mater ; 36(18): e2312621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38168037

RESUMEN

Wearable humidity sensors are attracting strong attention as they allow for real-time and continuous monitoring of important physiological information by enabling activity tracking as well as air quality assessment. Amongst 2Dimensional (2D) materials, graphene oxide (GO) is very attractive for humidity sensing due to its tuneable surface chemistry, high surface area, processability in water, and easy integration onto flexible substrates. However, strong hysteresis, low sensitivity, and cross-sensitivity issues limit the use of GO in practical applications, where continuous monitoring is preferred. Herein, a wearable and wireless impedance-based humidity sensor made with pyrene-functionalized hexagonal boron nitride (h-BN) nanosheets is demonstrated. The device shows enhanced sensitivity towards relative humidity (RH) (>1010 Ohms/%RH in the range from 5% to 100% RH), fast response (0.1 ms), no appreciable hysteresis, and no cross-sensitivity with temperature in the range of 25-60 °C. The h-BN-based sensor is able to monitor the whole breathing cycle process of exhaling and inhaling, hence enabling to record in real-time the subtlest changes of respiratory signals associated with different daily activities as well as various symptoms of flu, without requiring any direct contact with the individual.

11.
Nat Commun ; 15(1): 2015, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443350

RESUMEN

It is well known that molecules confined very close to a surface arrange into molecular layers. Because solid-liquid interfaces are ubiquitous in the chemical, biological and physical sciences, it is crucial to develop methods to easily access molecular layers and exploit their distinct properties by producing molecular layered crystals. Here we report a method based on crystallization in ultra-thin puddles enabled by gas blowing, which allows to produce molecular layered crystals with thickness down to the monolayer onto a surface, making them directly accessible for characterization and further processing. By selecting four molecules with different types of polymorphs, we observed exclusive crystallization of polymorphs with Van der Waals interlayer interactions, which have not been observed with traditional confinement methods. In conclusion, the gas blowing approach unveils the opportunity to perform materials chemistry under confinement onto a surface, enabling the formation of distinct crystals with selected polymorphism.

12.
Adv Mater ; 35(28): e2301410, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37022924

RESUMEN

Electroepitaxy is recognized as an effective approach to prepare metal electrodes with nearly complete reversibility. Nevertheless, large-scale manipulation is still not attainable owing to complicated interfacial chemistry. Here, the feasibility of extending Zn electroepitaxy toward the bulk phase over a mass-produced mono-oriented Cu(111) foil is demonstrated. Interfacial Cu-Zn alloy and turbulent electroosmosis are circumvented by adopting a potentiostatic electrodeposition protocol. The as-prepared Zn single-crystalline anode enables stable cycling of symmetric cells at a stringent current density of 50.0 mA cm-2 . The assembled full cell further sustaines a capacity retention of 95.7% at 5.0 A g-1 for 1500 cycles, accompanied by a controllably low N/P ratio of 7.5. In addition to Zn, Ni electroepitaxy can be realized by using the same approach. This study may inspire rational exploration of the design of high-end metal electrodes.


Asunto(s)
Aleaciones , Galvanoplastia , Electrodos , Zinc
13.
J Mater Chem A Mater ; 10(26): 13884-13894, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35872702

RESUMEN

Two-dimensional (2D) anatase titanium dioxide (TiO2) is expected to exhibit different properties as compared to anatase nanocrystallites, due to its highly reactive exposed facets. However, access to 2D anatase TiO2 is limited by the non-layered nature of the bulk crystal, which does not allow use of top-down chemical exfoliation. Large efforts have been dedicated to the growth of 2D anatase TiO2 with high reactive facets by bottom-up approaches, which relies on the use of harmful chemical reagents. Here, we demonstrate a novel fluorine-free strategy based on topochemical conversion of 2D 1T-TiS2 for the production of single crystalline 2D anatase TiO2, exposing the {001} facet on the top and bottom and {100} at the sides of the nanosheet. The exposure of these faces, with no additional defects or doping, gives rise to a significant activity enhancement in the hydrogen evolution reaction, as compared to commercially available Degussa P25 TiO2 nanoparticles. Because of the strong potential of TiO2 in many energy-based applications, our topochemical approach offers a low cost, green and mass scalable route for production of highly crystalline anatase TiO2 with well controlled and highly reactive exposed facets.

14.
ACS Nano ; 13(9): 9958-9964, 2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31398001

RESUMEN

Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 1014 cm-2 where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s-1 and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity.

15.
ACS Nano ; 13(7): 8312-8319, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31284713

RESUMEN

Two dimensional (2D) materials-based plasmon-free surface-enhanced Raman scattering (SERS) is an emerging field in nondestructive analysis. However, impeded by the low density of state (DOS), an inferior detection sensitivity is frequently encountered due to the low enhancement factor of most 2D materials. Metallic transition-metal dichalcogenides (TMDs) could be ideal plasmon-free SERS substrates because of their abundant DOS near the Fermi level. However, the absence of controllable synthesis of metallic 2D TMDs has hindered their study as SERS substrates. Here, we realize controllable synthesis of ultrathin metallic 2D niobium disulfide (NbS2) (<2.5 nm) with large domain size (>160 µm). We have explored the SERS performance of as-obtained NbS2, which shows a detection limit down to 10-14 mol·L-1. The enhancement mechanism was studied in depth by density functional theory, which suggested a strong correlation between the SERS performance and DOS near the Fermi level. NbS2 features the most abundant DOS and strongest binding energy with probe molecules as compared with other 2D materials such as graphene, 1T-phase MoS2, and 2H-phase MoS2. The large DOS increases the intermolecular charge transfer probability and thus induces prominent Raman enhancement. To extend the results to practical applications, the resulting NbS2-based plasmon-free SERS substrates were applied for distinguishing different types of red wines.

16.
Adv Mater ; 29(32)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28632325

RESUMEN

The direct growth of high-quality, large-area, uniform, vertically stacked Gr/h-BN heterostructures is of vital importance for applications in electronics and optoelectronics. However, the main challenge lies in the catalytically inert nature of the hexagonal boron nitride (h-BN) substrates, which usually afford a rather low decomposition rate of carbon precursors, and thus relatively low growth rate of graphene. Herein, a nickelocene-precursor-facilitated route is developed for the fast growth of Gr/h-BN vertical heterostructures on Cu foils, which shows much improved synthesis efficiency (8-10 times faster) and crystalline quality of graphene (large single-crystalline domain up to ≈20 µm). The key advantage of our synthetic route is the utilization of nickel atoms that are decomposed from nickelocene molecules as the gaseous catalyst, which can decrease the energy barrier for graphene growth and facilitate the decomposition of carbon sources, according to our density functional theory calculations. The high-quality Gr/h-BN stacks are proved to be perfect anode/protecting layers for high-performance organic light-emitting diode devices. In this regard, this work offers a brand-new route for the fast growth of Gr/h-BN heterostructures with practical scalability and high crystalline quality, thus should propel its wide applications in transparent electrodes, high-performance electronic devices, and energy harvesting/transition directions.

17.
Adv Mater ; 28(46): 10333-10339, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27677254

RESUMEN

Recently, direct chemical vapor deposition (CVD) growth of graphene on various types of glasses has emerged as a promising route to produce graphene glass, with advantages such as tunable quality, excellent film uniformity and potential scalability. Crucial to the performance of this graphene-coated glass is that the outstanding properties of graphene are fully retained for endowing glass with new surface characteristics, making direct-CVD-derived graphene glass versatile enough for developing various applications for daily life. Herein, recent advances in the synthesis of graphene glass, particularly via direct CVD approaches, are presented. Key applications of such graphene materials in transparent conductors, smart windows, simple heating devices, solar-cell electrodes, cell culture medium, and water harvesters are also highlighted.

18.
ACS Nano ; 10(12): 11136-11144, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-28024341

RESUMEN

In this work, we report the transfer-free measurement of carrier dynamics and transport of direct chemical vapor deposition (CVD) grown graphene on glass with the aid of ultrafast transient absorption microscopy (TAM) and demonstrate the use of such graphene glass for high-performance touch panel applications. The 4.5 in.-sized graphene glass was produced by an optimized CVD procedure, which can readily serve as transparent conducting electrode (TCE) without further treatment. The graphene glass exhibited an intriguing optical transmittance and electrical conductance concurrently, presenting a sheet resistance of 370-510 Ω·sq-1 at a transmittance of 82%, much improved from our previous achievements. Moreover, direct measurement of graphene carrier dynamics and transport by TAM revealed the similar biexponential decay behavior to that of CVD graphene grown on Cu, along with a carrier mobility as high as 4820 cm2·V-1·s-1. Such large-area, highly uniform, transparent conducting graphene glass was assembled to integrate resistive touch panels that demonstrated a high device performance. Briefly, this work aims to present the great feasibility of good quality graphene glass toward scalable and practical TCE applications.

19.
Nat Commun ; 7: 13440, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27819652

RESUMEN

Mass production of high-quality graphene with low cost is the footstone for its widespread practical applications. We present herein a self-limited growth approach for producing graphene powders by a small-methane-flow chemical vapour deposition process on naturally abundant and industrially widely used diatomite (biosilica) substrates. Distinct from the chemically exfoliated graphene, thus-produced biomorphic graphene is highly crystallized with atomic layer-thickness controllability, structural designability and less noncarbon impurities. In particular, the individual graphene microarchitectures preserve a three-dimensional naturally curved surface morphology of original diatom frustules, effectively overcoming the interlayer stacking and hence giving excellent dispersion performance in fabricating solution-processible electrodes. The graphene films derived from as-made graphene powders, compatible with either rod-coating, or inkjet and roll-to-roll printing techniques, exhibit much higher electrical conductivity (∼110,700 S m-1 at 80% transmittance) than previously reported solution-based counterparts. This work thus puts forward a practical route for low-cost mass production of various powdery two-dimensional materials.

20.
Nat Commun ; 6: 6835, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25869236

RESUMEN

In-plane and vertically stacked heterostructures of graphene and hexagonal boron nitride (h-BN-G and G/h-BN, respectively) are both recent focuses of graphene research. However, targeted synthesis of either heterostructure remains a challenge. Here, via chemical vapour deposition and using benzoic acid precursor, we have achieved the selective growth of h-BN-G and G/h-BN through a temperature-triggered switching reaction. The perfect in-plane h-BN-G is characterized by scanning tunnelling microscopy (STM), showing atomically patched graphene and h-BN with typical zigzag edges. In contrast, the vertical alignment of G/h-BN is confirmed by unique lattice-mismatch-induced moiré patterns in high-resolution STM images, and two sets of aligned selected area electron diffraction spots, both suggesting a van der Waals epitaxial mechanism. The present work demonstrates the chemical designability of growth process for controlled synthesis of graphene and h-BN heterostructures. With practical scalability, high uniformity and quality, our approach will promote the development of graphene-based electronics and optoelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA