Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS Pathog ; 17(12): e1010141, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34871331

RESUMEN

Influenza virus infection is dependent on host cellular factors, and identification of these factors and their underlying mechanisms can provide important information for the development of strategies to inhibit viral infection. Here, we used a highly pathogenic H5N1 influenza virus to perform a genome-wide CRISPR/Cas9 gene knockout screen in human lung epithelial cells (A549 cells), and found that knockout of transmembrane protein immunoglobulin superfamily DCC subclass member 4 (IGDCC4) significantly reduced the replication of the virus in A549 cells. Further studies showed that IGDCC4 interacted with the viral hemagglutinin protein and facilitated virus internalization into host cells. Animal infection studies showed that replication of H5N1 virus in the nasal turbinates, lungs, and kidneys of IGDCC4-knockout mice was significantly lower than that in the corresponding organs of wild-type mice. Half of the IGDCC4-knockout mice survived a lethal H5N1 virus challenge, whereas all of the wild-type mice died within 11 days of infection. Our study identifies a novel host factor that promotes influenza virus infection by facilitating internalization and provides insights that will support the development of antiviral therapies.


Asunto(s)
Receptor DCC/metabolismo , Endocitosis/fisiología , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/virología , Internalización del Virus , Células A549 , Animales , Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes , Humanos , Ratones , Ratones Noqueados
2.
Sci China Life Sci ; 67(3): 579-595, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038885

RESUMEN

Influenza A virus (IAV) commandeers numerous host cellular factors for successful replication. However, very few host factors have been revealed to be involved in the fusion of viral envelope and late endosomal membranes. In this study, we identified cation-dependent mannose-6-phosphate receptor (M6PR) as a crucial host factor for the replication of IAV. We found that siRNA knockdown of M6PR expression significantly reduced the growth titers of different subtypes of IAV, and that the inhibitory effect of M6PR siRNA treatment on IAV growth was overcome by the complement of exogenously expressed M6PR. When A549 cells were treated with siRNA targeting M6PR, the nuclear accumulation of viral nucleoprotein (NP) was dramatically inhibited at early timepoints post-infection, indicating that M6PR engages in the early stage of the IAV replication cycle. By investigating the role of M6PR in the individual entry and post-entry steps of IAV replication, we found that the downregulation of M6PR expression had no effect on attachment, internalization, early endosome trafficking, or late endosome acidification. However, we found that M6PR expression was critical for the fusion of viral envelope and late endosomal membranes. Of note, M6PR interacted with the hemagglutinin (HA) protein of IAV, and further studies showed that the lumenal domain of M6PR and the ectodomain of HA2 mediated the interaction and directly promoted the fusion of the viral and late endosomal membranes, thereby facilitating IAV replication. Together, our findings highlight the importance of the M6PR-HA interaction in the fusion of viral and late endosomal membranes during IAV replication.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/genética , Endosomas/metabolismo , Membranas Intracelulares , Células A549 , ARN Interferente Pequeño/metabolismo , Replicación Viral , Gripe Humana/genética
3.
Sci China Life Sci ; 62(1): 76-83, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30515728

RESUMEN

Antigenic drift forces us to frequently update influenza vaccines; however, the genetic basis for antigenic variation remains largely unknown. In this study, we used clade 7.2 H5 viruses as models to explore the molecular determinants of influenza virus antigenic variation. We generated eight monoclonal antibodies (MAbs) targeted to the hemagglutinin (HA) protein of the index virus A/chicken/Shanxi/2/2006 and found that two representative antigenically drifted clade 7.2 viruses did not react with six of the eight MAbs. The E131N mutation and insertion of leucine at position 134 in the HA protein of the antigenically drifted strains eliminated the reactivity of the virus with the MAbs. We also found that the amino acid N131 in the H5 HA protein is glycosylated. Our results provide experimental evidence that glycosylation and an amino acid insertion or deletion in HA influence antigenic variation.


Asunto(s)
Aminoácidos/inmunología , Antígenos Virales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Antígenos Virales/genética , Antígenos Virales/metabolismo , Pollos/virología , Glicosilación , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/metabolismo , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/metabolismo , Gripe Aviar/genética , Gripe Aviar/inmunología , Gripe Aviar/virología , Gripe Humana/genética , Gripe Humana/inmunología , Gripe Humana/virología , Homología de Secuencia de Aminoácido
4.
Cell Host Microbe ; 24(4): 558-568.e7, 2018 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-30269969

RESUMEN

H7N9 low pathogenic influenza viruses emerged in China in 2013 and mutated to highly pathogenic strains in 2017, resulting in human infections and disease in chickens. To control spread, a bivalent H5/H7 inactivated vaccine was introduced in poultry in September 2017. To monitor virus evolution and vaccine efficacy, we collected 53,884 poultry samples across China from February 2017 to January 2018. We isolated 252 H7N9 low pathogenic viruses, 69 H7N9 highly pathogenic viruses, and one H7N2 highly pathogenic virus, of which two low pathogenic and 14 highly pathogenic strains were collected after vaccine introduction. Genetic analysis of highly pathogenic strains revealed nine genotypes, one of which is predominant and widespread and contains strains exhibiting high virulence in mice. Additionally, some H7N9 and H7N2 viruses carrying duck virus genes are lethal in ducks. Thus, although vaccination reduced H7N9 infections, the increased virulence and expanded host range to ducks pose new challenges.


Asunto(s)
Enfermedades Transmisibles Emergentes/virología , Evolución Molecular , Subtipo H7N9 del Virus de la Influenza A/genética , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Pollos , China , Enfermedades Transmisibles Emergentes/sangre , Enfermedades Transmisibles Emergentes/inmunología , Enfermedades Transmisibles Emergentes/mortalidad , Patos , Femenino , Humanos , Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Aviar/sangre , Gripe Aviar/inmunología , Gripe Aviar/mortalidad , Gripe Humana/sangre , Gripe Humana/inmunología , Gripe Humana/mortalidad , Ratones , Ratones Endogámicos BALB C , Organismos Libres de Patógenos Específicos , Vacunas de Productos Inactivados/inmunología , Virulencia/genética
5.
Cell Res ; 27(12): 1409-1421, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29151586

RESUMEN

Certain low pathogenic avian influenza viruses can mutate to highly pathogenic viruses when they circulate in domestic poultry, at which point they can cause devastating poultry diseases and severe economic damage. The H7N9 influenza viruses that emerged in 2013 in China had caused severe human infections and deaths. However, these viruses were nonlethal in poultry. It is unknown whether the H7N9 viruses can acquire additional mutations during their circulation in nature and become lethal to poultry and more dangerous for humans. Here, we evaluated the evolution of H7N9 viruses isolated from avian species between 2013 and 2017 in China and found 23 different genotypes, 7 of which were detected only in ducks and were genetically distinct from the other 16 genotypes that evolved from the 2013 H7N9 viruses. Importantly, some H7N9 viruses obtained an insertion of four amino acids in their hemagglutinin (HA) cleavage site and were lethal in chickens. The index strain was not lethal in mice or ferrets, but readily obtained the 627K or 701N mutation in its PB2 segment upon replication in ferrets, causing it to become highly lethal in mice and ferrets and to be transmitted efficiently in ferrets by respiratory droplet. H7N9 viruses bearing the HA insertion and PB2 627K mutation have been detected in humans in China. Our study indicates that the new H7N9 mutants are lethal to chickens and pose an increased threat to human health, and thus highlights the need to control and eradicate the H7N9 viruses to prevent a possible pandemic.


Asunto(s)
Pollos/virología , Subtipo H7N9 del Virus de la Influenza A/genética , Mutación , Virulencia/genética , Animales , China , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA