RESUMEN
Parkinson's disease (PD) pathology is characterized by alpha-synuclein (α-syn) aggregates, degeneration of dopamine neurons in the substantia nigra pars compacta (SNpc), and neuroinflammation. The presence of reactive glia correlates with deposition of pathological α-syn in early-stage PD. Thus, understanding the neuroinflammatory response of microglia and astrocytes to synucleinopathy may identify therapeutic targets. Here we characterized the neuroinflammatory gene expression profile of reactive microglia and astrocytes in the SNpc during early synucleinopathy in the rat α-syn pre-formed fibril (PFF) model. Rats received intrastriatal injection of α-syn PFFs and expression of immune genes was quantified with droplet digital PCR (ddPCR), after which fluorescent in situ hybridization (FISH) was used to localize gene expression to microglia or astrocytes in the SNpc. Genes previously associated with reactive microglia (Cd74, C1qa, Stat1, Axl, Casp1, Il18, Lyz2) and reactive astrocytes (C3, Gbp2, Serping1) were significantly upregulated in the SN of PFF injected rats. Localization of gene expression to SNpc microglia near α-syn aggregates identified a unique α-syn aggregate microglial gene expression profile characterized by upregulation of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, C3, C1qa, Serping1 and Fcer1g. Importantly, significant microglial upregulation of Cd74 and C3 were only observed following injection of α-syn PFFs, not α-syn monomer, confirming specificity to α-syn aggregation. Serping1 expression also localized to astrocytes in the SNpc. Interestingly, C3 expression in the SNpc localized to microglia at 2- and 4-months post-PFF, but to astrocytes at 6-months post-PFF. We also observed expression of Rt1-a2 and Cxcl10 in SNpc dopamine neurons. Cumulatively our results identify a dynamic, yet reproducible gene expression profile of reactive microglia and astrocytes associated with early synucleinopathy in the rat SNpc.
Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Animales , Ratas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteína Inhibidora del Complemento C1/genética , Proteína Inhibidora del Complemento C1/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hibridación Fluorescente in Situ , Neuroglía/metabolismo , Enfermedades Neuroinflamatorias , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Sinucleinopatías/patología , TranscriptomaRESUMEN
Parkinson's disease (PD) is characterized by the accumulation of misfolded alpha-synuclein (α-syn) protein, forming intraneuronal Lewy body (LB) inclusions. The α-syn preformed fibril (PFF) model of PD recapitulates α-syn aggregation, progressive nigrostriatal degeneration and motor dysfunction; however, little is known about the time course of PFF-induced alterations in basal and evoked dopamine (DA). In vivo microdialysis is well suited for identifying small changes in neurotransmitter levels over extended periods. In the present study, adult male Fischer 344 rats received unilateral, intrastriatal injections of either α-syn PFFs or phosphate-buffered saline (PBS). At 4 or 8 months post-injection (p.i.), animals underwent in vivo microdialysis to evaluate basal extracellular striatal DA and metabolite levels, local KCl-evoked striatal DA release and the effects of systemic levodopa (l-DOPA). Post-mortem analysis demonstrated equivalent PFF-induced reductions in tyrosine hydroxylase (TH) immunoreactive nigral neurons (~50%) and striatal TH (~20%) at both time points. Compared with reduction in striatal TH, reduction in striatal dopamine transporter (DAT) was more pronounced and progressed between the 4- and 8-month p.i. intervals (36% â 46%). Significant PFF-induced deficits in basal and evoked striatal DA, as well as deficits in motor performance, were not observed until 8 months p.i. Responses to l-DOPA did not differ regardless of PBS or PFF treatment. These results suggest that basal and evoked striatal DA are maintained for several months following PFF injection, with loss of both associated with motor dysfunction. Our studies provide insight into the time course and magnitude of PFF-induced extracellular dopaminergic deficits in the striatum.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Ratas , Masculino , Animales , alfa-Sinucleína/metabolismo , Dopamina/metabolismo , Levodopa/farmacología , Microdiálisis , Sustancia Negra/metabolismo , Enfermedad de Parkinson/metabolismoRESUMEN
BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder that is characterized by the presence of proteinaceous alpha-synuclein (α-syn) inclusions (Lewy bodies), markers of neuroinflammation and the progressive loss of nigrostriatal dopamine (DA) neurons. These pathological features can be recapitulated in vivo using the α-syn preformed fibril (PFF) model of synucleinopathy. We have previously determined that microglia proximal to PFF-induced nigral α-syn inclusions increase in soma size, upregulate major-histocompatibility complex-II (MHC-II) expression, and increase expression of a suite of inflammation-associated transcripts. This microglial response is observed months prior to degeneration, suggesting that microglia reacting to α-syn inclusion may contribute to neurodegeneration and could represent a potential target for novel therapeutics. The goal of this study was to determine whether colony stimulating factor-1 receptor (CSF1R)-mediated microglial depletion impacts the magnitude of α-syn aggregation, nigrostriatal degeneration, or the response of microglial in the context of the α-syn PFF model. METHODS: Male Fischer 344 rats were injected intrastriatally with either α-syn PFFs or saline. Rats were continuously administered Pexidartinib (PLX3397B, 600 mg/kg), a CSF1R inhibitor, to deplete microglia for a period of either 2 or 6 months. RESULTS: CSF1R inhibition resulted in significant depletion (~ 43%) of ionized calcium-binding adapter molecule 1 immunoreactive (Iba-1ir) microglia within the SNpc. However, CSF1R inhibition did not impact the increase in microglial number, soma size, number of MHC-II immunoreactive microglia or microglial expression of Cd74, Cxcl10, Rt-1a2, Grn, Csf1r, Tyrobp, and Fcer1g associated with phosphorylated α-syn (pSyn) nigral inclusions. Further, accumulation of pSyn and degeneration of nigral neurons was not impacted by CSF1R inhibition. Paradoxically, long term CSF1R inhibition resulted in increased soma size of remaining Iba-1ir microglia in both control and PFF rats, as well as expression of MHC-II in extranigral regions. CONCLUSIONS: Collectively, our results suggest that CSF1R inhibition does not impact the microglial response to nigral pSyn inclusions and that CSF1R inhibition is not a viable disease-modifying strategy for PD.
Asunto(s)
Microglía , Ratas Endogámicas F344 , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos , alfa-Sinucleína , Animales , Microglía/metabolismo , Microglía/efectos de los fármacos , alfa-Sinucleína/metabolismo , Ratas , Masculino , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Pirroles/farmacología , Aminopiridinas/farmacología , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sustancia Negra/efectos de los fármacos , Modelos Animales de EnfermedadRESUMEN
Mutations in the GNAO1 gene, which encodes the abundant brain G-protein Gα o, result in neurologic disorders characterized by developmental delay, epilepsy, and movement abnormalities. There are over 50 mutant alleles associated with GNAO1 disorders; the R209H mutation results in dystonia, choreoathetosis, and developmental delay without seizures. Mice heterozygous for the human mutant allele (Gnao1 +/R209H) exhibit hyperactivity in open field tests but no seizures. We developed self-complementary adeno-associated virus serotype 9 (scAAV9) vectors expressing two splice variants of human GNAO1 Gα o isoforms 1 (GoA, GNAO1.1) and 2 (GoB, GNAO1.2). Bilateral intrastriatal injections of either scAAV9-GNAO1.1 or scAAV9-GNAO1.2 significantly reversed mutation-associated hyperactivity in open field tests. GNAO1 overexpression did not increase seizure susceptibility, a potential side effect of GNAO1 vector treatment. This represents the first report of successful preclinical gene therapy for GNAO1 encephalopathy applied in vivo. Further studies are needed to uncover the molecular mechanism that results in behavior improvements after scAAV9-mediated Gα o expression and to refine the vector design. SIGNIFICANCE STATEMENT: GNAO1 mutations cause a spectrum of developmental, epilepsy, and movement disorders. Here we show that intrastriatal delivery of scAAV9-GNAO1 to express the wild-type Gα o protein reduces the hyperactivity of the Gnao1 +/R209H mouse model, which carries one of the most common movement disorder-associated mutations. This is the first report of a gene therapy for GNAO1 encephalopathy applied in vivo on a patient-allele model.
Asunto(s)
Dependovirus , Subunidades alfa de la Proteína de Unión al GTP Gi-Go , Heterocigoto , Animales , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Ratones , Dependovirus/genética , Humanos , Masculino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Hipercinesia/genética , Mutación , Terapia Genética/métodos , Ratones Endogámicos C57BL , Locomoción/genéticaRESUMEN
In the past 25 years, the prevalence of Parkinson's disease (PD) has nearly doubled. Age remains the primary risk factor for PD and as the global aging population increases this trend is predicted to continue. Even when treated with levodopa, the gold standard dopamine (DA) replacement therapy, individuals with PD frequently develop therapeutic side effects. Levodopa-induced dyskinesia (LID), a common side effect of long-term levodopa use, represents a significant unmet clinical need in the treatment of PD. Previously, in young adult (3-month-old) male parkinsonian rats, we demonstrated that the silencing of CaV1.3 (Cacan1d) L-type voltage-gated calcium channels via striatal delivery of rAAV-CaV1.3-shRNA provides uniform protection against the induction of LID, and significant reduction of established severe LID. With the goal of more closely replicating a clinical demographic, the current study examined the effects of CaV1.3-targeted gene therapy on LID escalation in male and female parkinsonian rats of advanced age (18-month-old at study completion). We tested the hypothesis that silencing aberrant CaV1.3 channel activity in the parkinsonian striatum would prevent moderate to severe dyskinesia with levodopa dose escalation. To test this hypothesis, 15-month-old male and female F344 rats were rendered unilaterally parkinsonian and primed with low-dose (3-4 mg/kg) levodopa. Following the establishment of stable, mild dyskinesias, rats received an intrastriatal injection of either the Cacna1d-specific rAAV-CaV1.3-shRNA vector (CAV-shRNA), or the scramble control rAAV-SCR-shRNA vector (SCR-shRNA). Daily (M-Fr) low-dose levodopa was maintained for 4 weeks during the vector transduction and gene silencing window followed by escalation to 6 mg/kg, then to 12 mg/kg levodopa. SCR-shRNA-shRNA rats showed stable LID expression with low-dose levodopa and the predicted escalation of LID severity with increased levodopa doses. Conversely, complex behavioral responses were observed in aged rats receiving CAV-shRNA, with approximately half of the male and female subjects-therapeutic 'Responders'-demonstrating protection against LID escalation, while the remaining half-therapeutic 'Non-Responders'-showed LID escalation similar to SCR-shRNA rats. Post-mortem histological analyses revealed individual variability in the detection of Cacna1d regulation in the DA-depleted striatum of aged rats. However, taken together, male and female therapeutic 'Responder' rats receiving CAV-shRNA had significantly less striatal Cacna1d in their vector-injected striatum relative to contralateral striatum than those with SCR-shRNA. The current data suggest that mRNA-level silencing of striatal CaV1.3 channels maintains potency in a clinically relevant in vivo scenario by preventing dose-dependent dyskinesia escalation in rats of advanced age. As compared to the uniform response previously reported in young male rats, there was notable variability between individual aged rats, particularly females, in the current study. Future investigations are needed to derive the sex-specific and age-related mechanisms which underlie variable responses to gene therapy and to elucidate factors which determine the therapeutic efficacy of treatment for PD.
Asunto(s)
Discinesia Inducida por Medicamentos , Enfermedad de Parkinson , Ratas , Masculino , Femenino , Animales , Levodopa/efectos adversos , Regulación hacia Abajo , Ratas Sprague-Dawley , Ratas Endogámicas F344 , Discinesia Inducida por Medicamentos/metabolismo , Dopamina , Enfermedad de Parkinson/tratamiento farmacológico , ARN Interferente Pequeño , Antiparkinsonianos/farmacología , OxidopaminaRESUMEN
Preclinical studies show a link between subthalamic nucleus (STN) deep brain stimulation (DBS) and neuroprotection of nigrostriatal dopamine (DA) neurons, potentially through brain-derived neurotrophic factor (BDNF) signaling. However, the question of whether DBS of the STN can be disease-modifying in Parkinson's disease (PD) remains unanswered. In particular, the impact of STN DBS on α-synuclein (α-syn) aggregation, inclusion-associated neuroinflammation, and BDNF levels has yet to be examined in the context of synucleinopathy. To address this, we examined the effects of STN DBS on BDNF using the α-syn preformed fibril (PFF) model in male rats. While PFF injection resulted in accumulation of phosphorylated α-syn (pSyn) inclusions in the substantia nigra pars compacta (SNpc) and cortical areas, STN DBS did not impact PFF-induced accumulation of pSyn inclusions in the SNpc. In addition, nigral pSyn inclusions were associated with increased microgliosis and astrogliosis; however, the magnitude of these processes was not altered by STN DBS. Total BDNF protein was not impacted by pSyn inclusions, but the normally positive association of nigrostriatal and corticostriatal BDNF was reversed in rats with PFF-induced nigrostriatal and corticostriatal inclusions. Despite this, rats receiving both STN DBS and PFF injection showed increased BDNF protein in the striatum, which partially restored the normal corticostriatal relationship. Our results suggest that pathologic α-syn inclusions disrupt anterograde BDNF transport within nigrostriatal and corticostriatal circuitry. Further, STN DBS has the potential to exert protective effects by modifying the long-term neurodegenerative consequences of synucleinopathy.SIGNIFICANCE STATEMENT An increase in brain-derived neurotrophic factor (BDNF) has been linked to the neuroprotection elicited by subthalamic nucleus (STN) deep brain stimulation (DBS) in neurotoxicant models of Parkinson's disease (PD). However, whether STN DBS can similarly increase BDNF in nigrostriatal and corticostriatal circuitry in the presence of α-synuclein (α-syn) inclusions has not been examined. We examined the impact of STN DBS on rats in which accumulation of α-syn inclusions is induced by injection of α-syn preformed fibrils (PFFs). STN DBS significantly increased striatal BDNF protein in rats seeded with α-syn inclusions and partially restored the normal corticostriatal BDNF relationship. These findings suggest that STN DBS can drive BDNF in the parkinsonian brain and retains the potential for neuroprotection in PD.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estimulación Encefálica Profunda , Porción Compacta de la Sustancia Negra/metabolismo , Porción Compacta de la Sustancia Negra/patología , Sinucleinopatías/metabolismo , Sinucleinopatías/patología , Animales , Modelos Animales de Enfermedad , Masculino , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Ratas Endogámicas F344 , Núcleo Subtalámico/fisiologíaRESUMEN
Neuroinflammation has become a well-accepted pathologic hallmark of Parkinson's disease (PD). However, it remains unclear whether inflammation, triggered by α-syn aggregation and/or degeneration, contributes to the progression of the disease. Studies examining neuroinflammation in PD are unable to distinguish between Lewy body-associated inflammation and degeneration-associated inflammation, as both pathologies are present simultaneously. Intrastriatal and intranigral injections of alpha-synuclein (α-syn) preformed fibrils (PFFs) results in two distinct pathologic phases: Phase 1: The accumulation and peak formation of α-syn inclusions in nigrostriatal system and, Phase 2: Protracted dopaminergic neuron degeneration. In this review we summarize the current understanding of neuroinflammation in the α-syn PFF model, leveraging the distinct Phase 1 aggregation phase and Phase 2 degeneration phase to guide our interpretations. Studies consistently demonstrate an association between pathologic α-syn aggregation in the substantia nigra (SN) and activation of the innate immune system. Further, major histocompatibility complex-II (MHC-II) antigen presentation is proportionate to inclusion load. The α-syn aggregation phase is also associated with peripheral and adaptive immune cell infiltration to the SN. These findings suggest that α-syn like aggregates are immunogenic and thus have the potential to contribute to the degenerative process. Studies examining neuroinflammation during the neurodegenerative phase reveal elevated innate, adaptive, and peripheral immune cell markers, however limitations of single time point experimental design hinder interpretations as to whether this neuroinflammation preceded, or was triggered by, nigral degeneration. Longitudinal studies across both the aggregation and degeneration phases of the model suggest that microglial activation (MHC-II) is greater in magnitude during the aggregation phase that precedes degeneration. Overall, the consistency between neuroinflammatory markers in the parkinsonian brain and in the α-syn PFF model, combined with the distinct aggregation and degenerative phases, establishes the utility of this model platform to yield insights into pathologic events that contribute to neuroinflammation and disease progression in PD.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , Inflamación/patología , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , alfa-Sinucleína/metabolismoRESUMEN
BACKGROUND: Positron emission tomography (PET) imaging in early Parkinson's disease (PD) subjects reveals that increased dopamine (DA) turnover and reduced dopamine transporter (DAT) density precede decreases in DA synthesis and storage. The rat α-synuclein preformed fibril (α-syn PFF) model provides a platform to investigate DA dynamics during multiple stages of α-syn inclusion-triggered nigrostriatal degeneration. OBJECTIVES: We investigated multiple aspects of in vivo dopaminergic deficits longitudinally and similarities to human PD using translational PET imaging readouts. METHODS: Longitudinal imaging was performed every 2 months in PFF and control rats for 7 months. [18 F]-Fluoro-3,4-dihydroxyphenyl-L-alanine (FDOPA) imaging was performed to investigate DA synthesis and storage (Kocc ) and DA turnover, estimated by its inverse, the effective distribution volume ratio (EDVR). 11 C-Methylphenidate (MP) was used to estimate DAT density (BPND ). RESULTS: Early DA turnover increases and DAT binding decreases were observed in the ipsilateral striatum of PFF rats, progressing longitudinally. EDVR decreased 26%, 38%, and 47%, and BPND decreased 36%, 50%, and 65% at the 2-, 4-, and 6-month time points, respectively, compared to ipsilateral control striatum. In contrast, deficits in DA synthesis and storage were not observed in the ipsilateral striatum of PFF rats compared to control injections and were relatively preserved up to 6 months (Kocc decreased 20% at 6 months). CONCLUSIONS: The relative preservation of DA synthesis and storage compared to robust progressive deficits in DAT density and increases in DA turnover in the rat α-syn PFF model display remarkable face validity to dopaminergic alterations in human PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones , Ratas , alfa-Sinucleína/metabolismoRESUMEN
INTRODUCTION: The efficacy of pharmacotherapy and deep brain stimulation of the subthalamic nucleus in treating Parkinson's disease motor symptoms is highly variable and may be influenced by patient genotype. The relatively common (prevalence about one in three) and protein-altering rs6265 single nucleotide polymorphism (C > T) in the gene BDNF has been associated with different clinical outcomes with levodopa. OBJECTIVE: We sought to replicate this reported association in early-stage Parkinson's disease subjects and to examine whether a difference in clinical outcomes was present with subthalamic nucleus deep brain stimulation. MATERIALS AND METHODS: Fifteen deep brain stimulation and 13 medical therapy subjects were followed for 24 months as part of the Vanderbilt DBS in Early Stage PD clinical trial (NCT00282152, FDA IDE #G050016). Primary outcome measures were the Unified Parkinson's Disease Rating Scale (UPDRS) and Parkinson's Disease Questionnaire-39. RESULTS: Outcomes with drug therapy in subjects carrying the rs6265 T allele were significantly worse following 12 months of treatment compared to C/C subjects (UPDRS: +20 points, p = 0.019; PDQ-39: +16 points, p = 0.018). In contrast, rs6265 genotype had no effect on overall motor response to subthalamic nucleus deep brain stimulation at any time point; further, rs6265 C/C subjects treated with stimulation were associated with worse UPDRS part II scores at 24 months compared to medical therapy. CONCLUSIONS: Genotyping for the rs6265 polymorphism may be useful for predicting long-term response to drug therapy and counseling Parkinson's disease patients regarding whether to consider earlier subthalamic nucleus deep brain stimulation. Validation in a larger cohort of early-stage Parkinson's disease subjects is warranted.
Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/uso terapéutico , Genotipo , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Resultado del TratamientoRESUMEN
The transcription factor Nurr1 has been identified to be ectopically induced in the striatum of rodents expressing l-DOPA-induced dyskinesia (LID). In the present study, we sought to characterize Nurr1 as a causative factor in LID expression. We used rAAV2/5 to overexpress Nurr1 or GFP in the parkinsonian striatum of LID-resistant Lewis or LID-prone Fischer-344 (F344) male rats. In a second cohort, rats received the Nurr1 agonist amodiaquine (AQ) together with l-DOPA or ropinirole. All rats received a chronic DA agonist and were evaluated for LID severity. Finally, we performed single-unit recordings and dendritic spine analyses on striatal medium spiny neurons (MSNs) in drug-naïve rAAV-injected male parkinsonian rats. rAAV-GFP injected LID-resistant hemi-parkinsonian Lewis rats displayed mild LID and no induction of striatal Nurr1 despite receiving a high dose of l-DOPA. However, Lewis rats overexpressing Nurr1 developed severe LID. Nurr1 agonism with AQ exacerbated LID in F344 rats. We additionally determined that in l-DOPA-naïve rats striatal rAAV-Nurr1 overexpression (1) increased cortically-evoked firing in a subpopulation of identified striatonigral MSNs, and (2) altered spine density and thin-spine morphology on striatal MSNs; both phenomena mimicking changes seen in dyskinetic rats. Finally, we provide postmortem evidence of Nurr1 expression in striatal neurons of l-DOPA-treated PD patients. Our data demonstrate that ectopic induction of striatal Nurr1 is capable of inducing LID behavior and associated neuropathology, even in resistant subjects. These data support a direct role of Nurr1 in aberrant neuronal plasticity and LID induction, providing a potential novel target for therapeutic development.SIGNIFICANCE STATEMENT The transcription factor Nurr1 is ectopically induced in striatal neurons of rats exhibiting levodopa-induced dyskinesia [LID; a side-effect to dopamine replacement strategies in Parkinson's disease (PD)]. Here we asked whether Nurr1 is causing LID. Indeed, rAAV-mediated expression of Nurr1 in striatal neurons was sufficient to overcome LID-resistance, and Nurr1 agonism exacerbated LID severity in dyskinetic rats. Moreover, we found that expression of Nurr1 in l-DOPA naïve hemi-parkinsonian rats resulted in the formation of morphologic and electrophysiological signatures of maladaptive neuronal plasticity; a phenomenon associated with LID. Finally, we determined that ectopic Nurr1 expression can be found in the putamen of l-DOPA-treated PD patients. These data suggest that striatal Nurr1 is an important mediator of the formation of LID.
Asunto(s)
Cuerpo Estriado/metabolismo , Discinesia Inducida por Medicamentos/metabolismo , Levodopa/toxicidad , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/biosíntesis , Trastornos Parkinsonianos/metabolismo , Anciano , Animales , Cuerpo Estriado/efectos de los fármacos , Discinesia Inducida por Medicamentos/patología , Femenino , Humanos , Masculino , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Ratas , Ratas Endogámicas F344 , Ratas Endogámicas Lew , Ratas Sprague-DawleyRESUMEN
Prevalent in approximately 20% of the worldwide human population, the rs6265 (also called 'Val66Met') single nucleotide polymorphism (SNP) in the gene for brain-derived neurotrophic factor (BDNF) is a common genetic variant that can alter therapeutic responses in individuals with Parkinson's disease (PD). Possession of the variant Met allele results in decreased activity-dependent release of BDNF. Given the resurgent worldwide interest in neural transplantation for PD and the biological relevance of BDNF, the current studies examined the effects of the rs6265 SNP on therapeutic efficacy and side-effect development following primary dopamine (DA) neuron transplantation. Considering the significant reduction in BDNF release associated with rs6265, we hypothesized that rs6265-mediated dysfunctional BDNF signaling contributes to the limited clinical benefit observed in a subpopulation of PD patients despite robust survival of grafted DA neurons, and further, that this mutation contributes to the development of aberrant graft-induced dyskinesias (GID). To this end, we generated a CRISPR knock-in rat model of the rs6265 BDNF SNP to examine for the first time the influence of a common genetic polymorphism on graft survival, functional efficacy, and side-effect liability, comparing these parameters between wild-type (Val/Val) rats and those homozygous for the variant Met allele (Met/Met). Counter to our hypothesis, the current research indicates that Met/Met rats show enhanced graft-associated therapeutic efficacy and a paradoxical enhancement of graft-derived neurite outgrowth compared to wild-type rats. However, consistent with our hypothesis, we demonstrate that the rs6265 genotype in the host rat is strongly linked to development of GID, and that this behavioral phenotype is significantly correlated with neurochemical signatures of atypical glutamatergic neurotransmission by grafted DA neurons.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Trasplante de Células/métodos , Neuronas Dopaminérgicas/trasplante , Discinesias/genética , Animales , Antiparkinsonianos/efectos adversos , Trasplante de Células/efectos adversos , Neuronas Dopaminérgicas/metabolismo , Discinesia Inducida por Medicamentos/etiología , Discinesias/etiología , Embrión de Mamíferos , Técnicas de Sustitución del Gen , Levodopa/efectos adversos , Mesencéfalo/citología , Oxidopamina/toxicidad , Enfermedad de Parkinson Secundaria/inducido químicamente , Ratas , Simpaticolíticos/toxicidad , Proteína 2 de Transporte Vesicular de Glutamato/metabolismoRESUMEN
Human and animal studies have shown that exposure to the organochlorine pesticide dieldrin is associated with increased risk of Parkinson's disease (PD). Previous work showed that developmental dieldrin exposure increased neuronal susceptibility to MPTP toxicity in male C57BL/6 mice, possibly via changes in dopamine (DA) packaging and turnover. However, the relevance of the MPTP model to PD pathophysiology has been questioned. We therefore studied dieldrin-induced neurotoxicity in the α-synuclein (α-syn)-preformed fibril (PFF) model, which better reflects the α-syn pathology and toxicity observed in PD pathogenesis. Specifically, we used a "two-hit" model to determine whether developmental dieldrin exposure increases susceptibility to α-syn PFF-induced synucleinopathy. Dams were fed either dieldrin (0.3 mg/kg, every 3-4 days) or vehicle corn oil starting 1 month prior to breeding and continuing through weaning of pups at postnatal day 22. At 12 weeks of age, male and female offspring received intrastriatal α-syn PFF or control saline injections. Consistent with the male-specific increased susceptibility to MPTP, our results demonstrate that developmental dieldrin exposure exacerbates PFF-induced toxicity in male mice only. Specifically, in male offspring, dieldrin exacerbated PFF-induced motor deficits on the challenging beam and increased DA turnover in the striatum 6 months after PFF injection. However, male offspring showed neither exacerbation of phosphorylated α-syn aggregation (pSyn) in the substantia nigra (SN) at 1 or 2 months post-PFF injection, nor exacerbation of PFF-induced TH and NeuN loss in the SN 6 months post-PFF injection. Collectively, these data indicate that developmental dieldrin exposure produces a male-specific exacerbation of synucleinopathy-induced behavioral and biochemical deficits. This sex-specific result is consistent with both previous work in the MPTP model, our previously reported sex-specific effects of this exposure paradigm on the male and female epigenome, and the higher prevalence and more severe course of PD in males. The novel two-hit environmental toxicant/PFF exposure paradigm established in this project can be used to explore the mechanisms by which other PD-related exposures alter neuronal vulnerability to synucleinopathy in sporadic PD.
Asunto(s)
Dieldrín/toxicidad , Actividad Motora/efectos de los fármacos , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/patología , Plaguicidas/toxicidad , Agregación Patológica de Proteínas , alfa-Sinucleína/toxicidad , Animales , Dopamina/metabolismo , Femenino , Masculino , Ratones Endogámicos C57BL , Agregación Patológica de Proteínas/inducido químicamente , Agregación Patológica de Proteínas/metabolismo , Factores Sexuales , Sustancia Negra/metabolismo , Sustancia Negra/patología , alfa-Sinucleína/administración & dosificaciónRESUMEN
Parkinson's disease (PD) is a neurological disorder characterized by the progressive loss of functional dopaminergic neurons in the nigrostriatal pathway in the brain. Although current treatments provide only symptomatic relief, gene therapy has the potential to slow or halt the degeneration of nigrostriatal dopamine neurons in PD patients. Adeno-associated viruses (AAV) are vectors of choice in gene therapy because of their well-characterized safety and efficacy profiles; however, although gene therapy has been successful in preclinical models of the disease, clinical trials in humans have failed to demonstrate efficacy. Significantly, all primary AAV receptors of the virus are glycans. We thus hypothesize that age related changes in glycan receptors of heparan sulfate (HS) proteoglycans (receptor for rAAV2), and/or N-glycans with terminal galactose (receptor for rAAV9) results in poor adeno-associated virus binding in either the striatum or substantia nigra, or both, affecting transduction and gene delivery. To test our hypothesis we analyzed the striatum and substantia nigra for changes in HS, N-glycans and proteomic signatures in young versus aged rat brain striatum and substantia nigra. We observed different brain region-specific HS disaccharide profiles in aged compared with young adult rats for brain region-specific profiles in striatum versus substantia nigra. We observed brain region- and age-specific N-glycan compositional profiles with respect to the terminal galactose units that serve as receptors for AAV9. We also observed brain region-specific changes in protein expression in the aging nigrostriatal pathway. These studies provide insight into age- and brain region-specific changes in glycan receptors and proteome that will inform design of improved viral vectors for Parkinson Disease (PD) gene therapy.
Asunto(s)
Envejecimiento/metabolismo , Cuerpo Estriado/metabolismo , Glicómica , Proteoma/metabolismo , Proteómica , Sustancia Negra/metabolismo , Animales , Disacáridos/metabolismo , Galactosa/metabolismo , Heparitina Sulfato/metabolismo , Masculino , Especificidad de Órganos , Polisacáridos/metabolismo , Ratas Endogámicas F344RESUMEN
Animal models that accurately recapitulate the accumulation of alpha-synuclein (α-syn) inclusions, progressive neurodegeneration of the nigrostriatal system and motor deficits can be useful tools for Parkinson's disease (PD) research. The preformed fibril (PFF) synucleinopathy model in rodents generally displays these PD-relevant features, however, the magnitude and predictability of these events is far from established. We therefore sought to optimize the magnitude of α-syn accumulation and nigrostriatal degeneration, and to understand the time course of both. Rats were injected unilaterally with different quantities of α-syn PFFs (8 or 16⯵g of total protein) into striatal sites selected to concentrate α-syn inclusion formation in the substantia nigra pars compacta (SNpc). Rats displayed an α-syn PFF quantity-dependent increase in the magnitude of ipsilateral SNpc inclusion formation at 2â¯months and bilateral loss of nigral dopamine neurons at 6â¯months. Unilateral 16⯵g PFF injection also resulted in modest sensorimotor deficits in forelimb adjusting steps associated with degeneration at 6â¯months. Bilateral injection of 16⯵g α-syn PFFs resulted in symmetric bilateral degeneration equivalent to the ipsilateral nigral degeneration observed following unilateral 16⯵g PFF injection (~50% loss). Bilateral PFF injections additionally resulted in alterations in several gait analysis parameters. These α-syn PFF parameters can be applied to generate a reproducible synucleinopathy model in rats with which to study pathogenic mechanisms and vet potential disease-modifying therapies.
Asunto(s)
Cuerpo Estriado/metabolismo , Sustancia Negra/metabolismo , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Animales , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Ratas , Ratas Endogámicas F344 , Sustancia Negra/patología , Sinucleinopatías/patologíaRESUMEN
The concept that subthalamic nucleus deep brain stimulation (STN DBS) may be disease modifying in Parkinson's disease (PD) is controversial. Several clinical trials that enrolled subjects with late-stage PD have come to disparate conclusions on this matter. In contrast, some clinical studies in early- to midstage subjects have suggested a disease-modifying effect. Dopaminergic innervation of the putamen is essentially absent in PD subjects within 4 years after diagnosis, indicating that any neuroprotective therapy, including STN DBS, will require intervention within the immediate postdiagnosis interval. Preclinical prevention and early intervention paradigms support a neuroprotective effect of STN DBS on the nigrostriatal system via increased brain-derived neurotrophic factor (BDNF). STN DBS-induced increases in BDNF provide a multitude of mechanisms capable of ameliorating dysfunction and degeneration in the parkinsonian brain. A biomarker for measuring brain-derived neurotrophic factor-trkB signaling, though, is not available for clinical research. If a prospective clinical trial were to examine whether STN DBS is disease modifying, we contend the strongest rationale is not dependent on a preclinical neuroprotective effect per se, but on the myriad potential mechanisms whereby STN DBS-elicited brain-derived neurotrophic factor-trkB signaling could provide disease modification. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Estimulación Encefálica Profunda , Enfermedad de Parkinson/tratamiento farmacológico , Trastornos Parkinsonianos/tratamiento farmacológico , Humanos , Fármacos Neuroprotectores , Enfermedad de Parkinson/fisiopatología , Trastornos Parkinsonianos/fisiopatología , Núcleo Subtalámico/metabolismoRESUMEN
The clinical experience with cell replacement therapy for advanced PD has yielded notable successes and failures. A recent autopsy case report of an individual that received implants of fetal dopamine neurons 16 years previously, but at no time experienced clinical benefit despite the best documented survival of grafted neurons and most extensive reinnervation of the striatum, raises sobering issues. With good reason, a great deal of effort in cell replacement science continues to focus on optimizing the cell source and implantation procedure. Here, we describe our preclinical studies in aged rats indicating that despite survival of large numbers of transplanted dopamine neurons and dense reinnervation of the striatum, synaptic connections between graft and host are markedly decreased and behavioral recovery is impaired. This leads us to the hypothesis that the variability in therapeutic response to dopamine neuron grafts may be less about the viability of transplanted neurons and more about the integrity of the aged, dopamine-depleted striatum and its capacity for repair. Replacement of dopamine innervation only can be fully effective if the correct target is present. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Envejecimiento/patología , Trasplante de Células , Neuronas Dopaminérgicas/trasplante , Neostriado/patología , Enfermedad de Parkinson/terapia , Sinapsis/patología , Envejecimiento/metabolismo , Animales , Neuronas Dopaminérgicas/patología , Supervivencia de Injerto , Humanos , Neostriado/metabolismo , Enfermedad de Parkinson/patología , Ratas , Sinapsis/metabolismo , Insuficiencia del Tratamiento , Resultado del TratamientoRESUMEN
BACKGROUND: Levodopa-induced dyskinesias are an often debilitating side effect of levodopa therapy in Parkinson's disease. Although up to 90% of individuals with PD develop this side effect, uniformly effective and well-tolerated antidyskinetic treatment remains a significant unmet need. The pathognomonic loss of striatal dopamine in PD results in dysregulation and disinhibition of striatal CaV1.3 calcium channels, leading to synaptopathology that appears to be involved in levodopa-induced dyskinesias. Although there are clinically available drugs that can inhibit CaV1.3 channels, they are not adequately potent and have only partial and transient impact on levodopa-induced dyskinesias. METHODS: To provide unequivocal target validation, free of pharmacological limitations, we developed a CaV1.3 shRNA to provide high-potency, target-selective, mRNA-level silencing of striatal CaV1.3 channels and examined its ability to impact levodopa-induced dyskinesias in severely parkinsonian rats. RESULTS: We demonstrate that vector-mediated silencing of striatal CaV1.3 expression in severely parkinsonian rats prior to the introduction of levodopa can uniformly and completely prevent induction of levodopa-induced dyskinesias, and this antidyskinetic benefit persists long term and with high-dose levodopa. In addition, this approach is capable of ameliorating preexisting severe levodopa-induced dyskinesias. Importantly, motoric responses to low-dose levodopa remained intact in the presence of striatal CaV1.3 silencing, indicating preservation of levodopa benefit without dyskinesia liability. DISCUSSION: The current data provide some of the most profound antidyskinetic benefit reported to date and suggest that genetic silencing of striatal CaV1.3 channels has the potential to transform treatment of individuals with PD by allowing maintenance of motor benefit of levodopa in the absence of the debilitating levodopa-induced dyskinesia side effect. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Asunto(s)
Antiparkinsonianos/efectos adversos , Canales de Calcio/genética , Discinesia Inducida por Medicamentos/prevención & control , Levodopa/efectos adversos , Neostriado/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Adrenérgicos/toxicidad , Animales , Modelos Animales de Enfermedad , Discinesia Inducida por Medicamentos/etiología , Discinesia Inducida por Medicamentos/terapia , Proteínas Fluorescentes Verdes , Sustancias Luminiscentes , Haz Prosencefálico Medial , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Sustancia Negra , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the most common neurosurgical treatment for Parkinson's disease motor symptoms. In preclinical models, STN DBS provides neuroprotection for substantia nigra (SN) dopamine neurons and increases BDNF in the nigrostriatal system and primary motor cortex. However, whether BDNF signaling in the SN participates in the neuroprotective effects of DBS remains unknown. We demonstrate that STN DBS in male rats activates signaling downstream of tropomyosin receptor kinase type B (trkB), namely, phosphorylation of Akt and ribosomal protein S6, in SN neurons. Long-term trkB blockade abolished STN DBS-mediated neuroprotection of SN neurons following progressive 6-hydroxydopamine lesion and was associated with decreased phosphorylated ribosomal protein S6 immunoreactivity. Acute trkB blockade in rats with stable nigrostriatal denervation attenuated the forelimb akinesia improvement normally induced by STN DBS. These results suggest that STN DBS increases BDNF-trkB signaling to contribute to the neuroprotective and symptomatic efficacy of STN DBS.SIGNIFICANCE STATEMENT Subthalamic nucleus deep brain stimulation (STN DBS) is increasingly used in mid- to late-stage Parkinson's disease (PD) but with an incomplete knowledge of its molecular mechanisms. STN DBS is neuroprotective against neurotoxicants in animal models and increases BDNF. This study is the first to show that BDNF signaling through the cognate tropomyosin receptor kinase type B (trkB) receptor occurs in substantia nigra pars compacta neurons and is required for neuroprotection. In addition, blockade of trkB unexpectedly reduced the functional benefit of STN DBS on a short timescale that is inconsistent with canonical trkB signaling pathways, suggesting a noncanonical role for trkB in STN DBS-mediated behavioral effects. Together, these data implicate trkB signaling in the symptomatic efficacy and disease-modifying potential of STN DBS.
Asunto(s)
Estimulación Encefálica Profunda , Regeneración Nerviosa/fisiología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Proteínas Tirosina Quinasas/metabolismo , Núcleo Subtalámico/fisiopatología , Animales , Masculino , Enfermedad de Parkinson/diagnóstico , Ratas , Ratas Sprague-Dawley , Receptor trkB , Recuperación de la Función/fisiología , Transducción de SeñalRESUMEN
BACKGROUND: Converging evidence suggests a role for microglia-mediated neuroinflammation in Parkinson's disease (PD). Animal models of PD can serve as a platform to investigate the role of neuroinflammation in degeneration in PD. However, due to features of the previously available PD models, interpretations of the role of neuroinflammation as a contributor to or a consequence of neurodegeneration have remained elusive. In the present study, we investigated the temporal relationship of neuroinflammation in a model of synucleinopathy following intrastriatal injection of pre-formed alpha-synuclein fibrils (α-syn PFFS). METHODS: Male Fischer 344 rats (N = 114) received unilateral intrastriatal injections of α-syn PFFs, PBS, or rat serum albumin with cohorts euthanized at monthly intervals up to 6 months. Quantification of dopamine neurons, total neurons, phosphorylated α-syn (pS129) aggregates, major histocompatibility complex-II (MHC-II) antigen-presenting microglia, and ionized calcium-binding adaptor molecule-1 (Iba-1) immunoreactive microglial soma size was performed in the substantia nigra. In addition, the cortex and striatum were also examined for the presence of pS129 aggregates and MHC-II antigen-presenting microglia to compare the temporal patterns of pSyn accumulation and reactive microgliosis. RESULTS: Intrastriatal injection of α-syn PFFs to rats resulted in widespread accumulation of phosphorylated α-syn inclusions in several areas that innervate the striatum followed by significant loss (~ 35%) of substantia nigra pars compacta dopamine neurons within 5-6 months. The peak magnitudes of α-syn inclusion formation, MHC-II expression, and reactive microglial morphology were all observed in the SN 2 months following injection and 3 months prior to nigral dopamine neuron loss. Surprisingly, MHC-II immunoreactivity in α-syn PFF injected rats was relatively limited during the later interval of degeneration. Moreover, we observed a significant correlation between substantia nigra pSyn inclusion load and number of microglia expressing MHC-II. In addition, we observed a similar relationship between α-syn inclusion load and number of microglia expressing MHC-II in cortical regions, but not in the striatum. CONCLUSIONS: Our results demonstrate that increases in microglia displaying a reactive morphology and MHC-II expression occur in the substantia nigra in close association with peak numbers of pSyn inclusions, months prior to nigral dopamine neuron degeneration, and suggest that reactive microglia may contribute to vulnerability of SNc neurons to degeneration. The rat α-syn PFF model provides an opportunity to examine the innate immune response to accumulation of pathological α-syn in the context of normal levels of endogenous α-syn and provides insight into the earliest neuroinflammatory events in PD.
Asunto(s)
Cuerpos de Lewy/patología , Microglía/patología , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/patología , Sustancia Negra/patología , alfa-Sinucleína/toxicidad , Animales , Inyecciones Intraventriculares , Cuerpos de Lewy/efectos de los fármacos , Cuerpos de Lewy/metabolismo , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Degeneración Nerviosa/metabolismo , Ratas , Ratas Endogámicas F344 , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , alfa-Sinucleína/administración & dosificaciónRESUMEN
After publication of the original article [1] it was noted that the name of author, D. Luke Fisher, was erroneously typeset in both the PDF and online formats of the manuscript as Luke D. Fisher.