Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; 23(22): e202200354, 2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-35781918

RESUMEN

Feruloyl esterases (FAEs) are versatile enzymes able to release hydroxycinnamic acids or synthesize their ester derivatives, both molecules with interesting biological activities such as: antioxidants, antifungals, antivirals, antifibrotic, anti-inflammatory, among others. The importance of these molecules in medicine, food or cosmetic industries provides FAEs with several biotechnological applications as key industrial biocatalysts. However, FAEs have some operational limitations that must be overcome, which can be addressed through different protein engineering approaches to enhance their thermal stability, catalytic efficiencies, and selectivity. This review aims to present a brief historical tour through the mutagenesis strategies employed to improve enzymes performance and analyze the current protein engineering strategies applied to FAEs as interesting biocatalysts. Finally, an outlook of the future of FAEs protein engineering approaches to achieve successful industrial biocatalysts is given.


Asunto(s)
Hidrolasas de Éster Carboxílico , Ingeniería de Proteínas , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Biotecnología , Catálisis , Biocatálisis , Enzimas/metabolismo
2.
Fish Shellfish Immunol ; 100: 246-255, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32151687

RESUMEN

Although information about invertebrate lysozymes is scarce, these enzymes have been described as components of the innate immune system, functioning as antibacterial proteins. Here we describe the first thermodynamic and structural study of a new C-type lysozyme from a Pacific white shrimp Litopenaeus vannamei (LvL), which has shown high activity against both Gram (+) and Gram (-) bacteria including Vibrio sp. that is one of the most severe pathogens in penaeid shrimp aquaculture. Compared with hen egg-white lysozyme, its sequence harbors a seven-residue insertion from amino acid 97 to 103, and a nine-residue extension at the C-terminus only found in penaeid crustaceans, making this enzyme one of the longest lysozyme reported to date. LvL was crystallized in the presence and absence of chitotriose. The former crystallized as a monomer in space group P61 and the latter in P212121 with two monomers in the asymmetric unit. Since the enzyme crystallized at a pH where lysozyme activity is deficient, the ligand could not be observed in the P61 structure; therefore, we performed a docking simulation with chitotriose to compare with the hen egg lysozyme crystallized in the presence of the ligand. Remarkably, additional amino acids in LvL caused an increase in the length of α-helix H4 (residues 97-103) that is directly related to ligand recognition. The Ka for chitotriose (4.1 × 105 M-1), as determined by Isothermal Titration Calorimetry, was one order of magnitude higher than those for lysozymes from hen and duck eggs. Our results revealed new interactions of chitiotriose with residues in helix H4.


Asunto(s)
Muramidasa/química , Penaeidae/enzimología , Trisacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Calorimetría , Pollos , Patos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Inmunidad Innata , Simulación del Acoplamiento Molecular , Unión Proteica , Estructura Terciaria de Proteína , Vibrio/efectos de los fármacos
3.
Molecules ; 24(19)2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31581425

RESUMEN

The Cu2+, Mn2+, and Fe3+ complexes of a 14 membered macrocycle were synthesized and their antioxidant capacities were evaluated against ABTS and DPPH radicals, with the objective of collecting insights into the biomimetic role of the central metal ions. The macrocycle, abbreviated as H2L14, is a derivative of EDTA cyclized with 1,4-diamine, and the moderately flexible macrocyclic frame permits the formation of [ML14·H2O] chelates with octahedral coordination geometries common among the metal ions. The metal complexes were characterized by electrospray-ionization mass spectrometry, Fourier transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopic methods, as well as thermogravimetric analysis; the octahedral coordination geometries with water coordination were optimized by DFT calculations. The antioxidant assays showed that [FeL14·H2O]+ was able to scavenge synthetic radicals with moderate capacity, whereas the other metal chelates did not show significant activity. The Raman spectrum of DPPH in solution suggests that interaction was operative between the Fe3+ chelate and the radical so as to cause scavenging capability. The nature of the central metal ions is a controlling factor for antioxidant capacity, as every metal chelate carries the same coordination geometry.


Asunto(s)
Antioxidantes/síntesis química , Complejos de Coordinación/síntesis química , Ácido Edético/química , Compuestos Macrocíclicos/síntesis química , Antioxidantes/química , Complejos de Coordinación/química , Cobre/química , Teoría Funcional de la Densidad , Hierro/química , Compuestos Macrocíclicos/química , Manganeso/química , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
4.
Biochim Biophys Acta ; 1864(12): 1696-1706, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27614148

RESUMEN

Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation.


Asunto(s)
Penaeidae/enzimología , Triosa-Fosfato Isomerasa/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Estabilidad de Enzimas , Cinética , Modelos Moleculares , Penaeidae/genética , Desnaturalización Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Triosa-Fosfato Isomerasa/genética , Triosa-Fosfato Isomerasa/metabolismo
5.
J Biochem Mol Toxicol ; 31(2)2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27717103

RESUMEN

Glutathione S-transferases (GSTs) are dimeric proteins that play a key role in phase II cellular detoxification. Here, the first crystal structure of a GST class-mu from marine crustacean shrimp Litopenaeus vannamei is reported at a resolution of 2.0 Å. The coordinates reported here have the lowest sequence identity with previously reported GSTs class-mu deposited at the Protein Data Bank (PDB), although they have subtle conformational differences. One key feature of GST class-mu from L. vannamei is the active site crevice markedly reduced when it is compared with other GSTs class-mu. This finding together with the chemical change of residues into the cavity (F112 and Y210) points to a particular specialization in which smallest xenobiotics with nonstandard chemical characteristics can be bound to the H-site. This suggests that marine organisms have evolved structural strategies to provide efficient selectivity toward xenobiotics to be disposed of by the phase II detoxification process.


Asunto(s)
Glutatión Transferasa/química , Xenobióticos/metabolismo , Animales , Sitios de Unión , Crustáceos , Cristalografía por Rayos X , Glutatión Transferasa/aislamiento & purificación , Glutatión Transferasa/metabolismo , Conformación Proteica
6.
J Bioenerg Biomembr ; 48(3): 301-8, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27072556

RESUMEN

Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.


Asunto(s)
Arginina Quinasa/metabolismo , Nucleósido-Difosfato Quinasa/metabolismo , Penaeidae/enzimología , Nucleótidos de Timina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Simulación del Acoplamiento Molecular , Fosforilación
7.
Inorg Chem ; 55(15): 7564-75, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27433814

RESUMEN

The synthesis, acid-base behavior, and Cu(2+) coordination chemistry of a new ligand (L1) consisting of an azamacrocyclic core appended with a lateral chain containing a 3-hydroxy-2-methyl-4(1H)-pyridinone group have been studied by potentiometry, cyclic voltammetry, and NMR and UV-vis spectroscopy. UV-vis and NMR studies showed that phenolate group was protonated at the highest pH values [log K = 9.72(1)]. Potentiometric studies point out the formation of Cu(2+) complexes of 1:2, 2:2, 4:3, 1:1, and 2:1 Cu(2+)/L1 stoichiometries. UV-vis analysis and electrochemical studies evidence the implication of the pyridinone moieties in the metal coordination of the 1:2 Cu(2+)/L1 complexes. L1 shows a stronger chelating ability than the reference chelating ligand deferiprone. While L1 shows no cytotoxicity in HeLa and ARPE-19 human cell lines (3.1-25.0 µg/mL), it has significant antioxidant activity, as denoted by TEAC assays at physiological pH. The addition of Cu(2+) diminishes the antioxidant activity because of its coordination to the pyridinone moiety phenolic group.


Asunto(s)
Antioxidantes/farmacología , Quelantes/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cobre/química , Piridinas/química , Antioxidantes/química , Proliferación Celular/efectos de los fármacos , Quelantes/farmacología , Técnicas de Química Sintética , Complejos de Coordinación/síntesis química , Cristalografía por Rayos X , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Potenciometría , Piridonas/química , Espectrofotometría Ultravioleta , Relación Estructura-Actividad
8.
J Bioenerg Biomembr ; 47(3): 223-34, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25731176

RESUMEN

The mitochondrial FOF1 ATP synthase produces ATP in a reaction coupled to an electrochemical proton gradient generated by the electron transfer chain. The enzyme also hydrolyzes ATP according to the energy requirements of the organism. Shrimp need to overcome low oxygen concentrations in water and other energetic stressors, which in turn lead to mitochondrial responses. The aim of this study was to characterize the full-length cDNA sequences of three subunits that form the central stalk of the F1 catalytic domain of the ATP synthase of the white shrimp Litopenaeus vannamei and their deduced proteins. The effect of hypoxia on shrimp was also evaluated by measuring changes in the mRNA amounts of these subunits. The cDNA sequences of the nucleus-encoded ATPγ, ATPδ and ATPε subunits are 1382, 477 and 277 bp long, respectively. The three deduced amino acid sequences exhibited highly conserved regions when compared to homologous sequences, and specific substitutions found in shrimp subunits are discussed through an homology structural model of F1 ATP-synthase that included the five deduced proteins, which confirm their functional structures and specific characteristics from the cognate complex of ATP synthases. Genes expression was evaluated during hypoxia-reoxygenation, and resulted in a generalized down-regulation of the F1 subunits and no coordinated changes were detected among these five subunits. The reduced mRNA levels suggest a mitochondrial response to an oxidative stress event, similar to that observed at ischemia-reperfusion in mammals. This model analysis and responses to hypoxia-reoxygenation may help to better understand additional mitochondrial adaptive mechanisms.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Hipoxia de la Célula/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Modelos Moleculares , Penaeidae/enzimología , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ADN Complementario/genética , Perfilación de la Expresión Génica , ATPasas de Translocación de Protón Mitocondriales/química , Datos de Secuencia Molecular , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN
9.
J Bioenerg Biomembr ; 47(5): 431-40, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26315341

RESUMEN

Nucleotide phosphorylation is a key step in DNA replication and viral infections, since suitable levels of nucleotide triphosphates pool are required for this process. Deoxythymidine monophosphate (dTMP) is produced either by de novo or salvage pathways, which is further phosphorylated to deoxythymidine triphosphate (dTTP). Thymidyne monophosphate kinase (TMK) is the enzyme in the junction of both pathways, which phosphorylates dTMP to yield deoxythymidine diphosphate (dTDP) using adenosine triphosphate (ATP) as a phosphate donor. White spot syndrome virus (WSSV) genome contains an open reading frame (ORF454) that encodes a thymidine kinase and TMK domains in a single polypeptide. We overexpressed the TMK ORF454 domain (TMKwssv) and its specific activity was measured with dTMP and dTDP as phosphate acceptors. We found that TMKwssv can phosphorylate dTMP to yield dTDP and also is able to use dTDP as a substrate to produce dTTP. Kinetic parameters K M and k cat were calculated for dTMP (110 µM, 3.6 s(-1)), dTDP (251 µM, 0.9 s(-1)) and ATP (92 µM, 3.2 s(-1)) substrates, and TMKwssv showed a sequential ordered bi-bi reaction mechanism. The binding constants K d for dTMP (1.9 µM) and dTDP (10 µM) to TMKwssv were determined by Isothermal Titration Calorimetry. The affinity of the nucleotidic analog stavudine monophosphate was in the same order of magnitude (K d 3.6 µM) to the canonical substrate dTMP. These results suggest that nucleotide analogues such as stavudine could be a suitable antiviral strategy for the WSSV-associated disease.


Asunto(s)
Nucleósido-Fosfato Quinasa/química , Sistemas de Lectura Abierta , Proteínas Virales/química , Virus del Síndrome de la Mancha Blanca 1/enzimología , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Nucleósido-Fosfato Quinasa/genética , Estructura Terciaria de Proteína , Especificidad por Sustrato/fisiología , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , Virus del Síndrome de la Mancha Blanca 1/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-38043730

RESUMEN

The Apolipophorin-III (apoLp-III) is reported as an essential protein element in lipids transport and incorporation in lepidopterans. Structurally, apoLp-III has an α-helix bundle structure composed of five α-helices. Interestingly, classic studies proposed a structural switch triggered by its interaction with lipids, where the α-helix bundle opens. Currently, the study of the apoLp-III has been limited to insects, with no homologs identified in other arthropods. By implementing a structure-based search with the Phyre2 algorithm surveying the shrimp Litopenaeus vannamei's transcriptome, we identified a putative apoLp-III in this farmed penaeid (LvApoLp-III). Unlike canonical apoLp-III, the LvApoLp-III was identified as an internal domain within the transmembrane protein Prominin-1. Structural modeling using the template-based Phyre2 and template-free AlphaFold algorithms rendered two distinct structural topologies: the α-helix bundle and a coiled-coil structure. Notably, the secondary structure composition on both models was alike, with differences in the orientation and distribution of the α-helices and hydrophobic moieties. Both models provide insights into the classical structural switch induced by lipids in apoLp-III. To corroborate structure/function inferences, we cloned the synthetic LvApoLp-III domain, overexpressed, and purified the recombinant protein. Circular dichroism measurements with the recombinant LvApoLp-III agreed with the structural models. In vitro liposome interaction demonstrated that the apoLp-III domain within the PROM1 of L.vannamei associated similarly to exchangeable apolipoproteins. Altogether, this work reports the presence of an apolipophorin-III domain in crustaceans for the first time and opens questions regarding its function and importance in lipid metabolism or the immune system.


Asunto(s)
Apolipoproteínas , Liposomas , Animales , Antígeno AC133 , Apolipoproteínas/química , Apolipoproteínas/genética , Apolipoproteínas/metabolismo , Estructura Secundaria de Proteína , Liposomas/química
11.
PeerJ ; 12: e17737, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035161

RESUMEN

Mango is a popular tropical fruit that requires quarantine hot water treatment (QHWT) for postharvest sanitation, which can cause abiotic stress. Plants have various defense mechanisms to cope with stress; miRNAs mainly regulate the expression of these defense responses. Proteins involved in the biogenesis of miRNAs include DICER-like (DCL), ARGONAUTE (AGO), HYPONASTIC LEAVES 1 (HYL1), SERRATE (SE), HUA ENHANCER1 (HEN1), HASTY (HST), and HEAT-SHOCK PROTEIN 90 (HSP90), among others. According to our analysis, the mango genome contains five DCL, thirteen AGO, six HYL, two SE, one HEN1, one HST, and five putative HSP90 genes. Gene structure prediction and domain identification indicate that sequences contain key domains for their respective gene families, including the RNase III domain in DCL and PAZ and PIWI domains for AGOs. In addition, phylogenetic analysis indicates the formation of clades that include the mango sequences and their respective orthologs in other flowering plant species, supporting the idea these are functional orthologs. The analysis of cis-regulatory elements of these genes allowed the identification of MYB, ABRE, GARE, MYC, and MeJA-responsive elements involved in stress responses. Gene expression analysis showed that most genes are induced between 3 to 6 h after QHWT, supporting the early role of miRNAs in stress response. Interestingly, our results suggest that mango rapidly induces the production of miRNAs after heat stress. This research will enable us to investigate further the regulation of gene expression and its effects on commercially cultivated fruits, such as mango, while maintaining sanitary standards.


Asunto(s)
Respuesta al Choque Térmico , Mangifera , MicroARNs , Mangifera/genética , Mangifera/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Respuesta al Choque Térmico/genética , Filogenia , Familia de Multigenes/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Food Chem ; 460(Pt 1): 140504, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39033634

RESUMEN

Greening of tuna metmyoglobin (MetMb) by thermal treatment (TT) and free cysteine is associated with sulfmyoglobin (SulfMb) production. This greening reaction (GR) was once thought to occur only in tuna species. However, recent research has revealed that not all tuna species exhibit this behavior, and it can also occur in horse MetMb. Thus, the present study aimed to compare the GR-reactive (Katsuwonus pelamis and Equus caballus) and GR-unreactive (Sarda chiliensis and Euthynnus lineatus) MetMb using UV-vis spectrometry during TT (60 °C/30 min and free cysteine) to monitor the GR. We used molecular dynamics (MD) simulation to assess the stability of the heme group during TT. We discovered that using GR-unreactive MetMb resulted in an incomplete GR without producing SulfMb. Additionally, our MD simulations indicated that Met85 presence in the heme cavity from GR-unreactive is responsible for the heme group instability and displacement of distal His during TT.

13.
ACS Omega ; 9(4): 4412-4422, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38313514

RESUMEN

This work reports on two thiourea-based receptors with pyridine and amine units including 1-naphthyl (MT1N) and 4-nytrophenyl (MT4N) as signaling units. For both compounds, their affinity and signaling ability toward various anions of different geometry and basicity in DMSO were studied using UV-vis, fluorescence, and 1H NMR techniques. Anion recognition studies revealed that both MT1N and MT4N have, in general, high affinities toward basic anions. In this regard, a higher acidity of the MT4N receptor was demonstrated. Furthermore, MT4N has a higher affinity for fluoride (log K1 = 5.98) than for the other anions and can effectively detect it through colorimetric changes that can be monitored by the UV-vis technique. The interaction between receptors and anions mainly involves the hydrogens of the amino and thiourea groups of the former. Complementary single-crystal X-ray diffraction studies and molecular modeling at the DFT level were also performed.

14.
Heliyon ; 10(13): e34036, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071691

RESUMEN

Loxosceles spp. spiders can cause serious public health issues. Chemical control is commonly used, leading to health and environmental problems. Identifying molecular targets and using them with natural compounds can help develop safer and eco-friendlier biopesticides. We studied the kinetics and predicted structural characteristics of arginine kinase (EC 2.7.3.3) from Loxosceles laeta (LlAK), a key enzyme in the energy metabolism of these organisms. Additionally, we explored (-)-epigallocatechin gallate (EGCG), a green tea flavonoid, as a potential lead compound for the LlAK active site through fluorescence and in silico analysis, such as molecular docking and molecular dynamics (MD) simulation and MM/PBSA analyses. The results indicate that LlAK is a highly efficient enzyme (K m Arg 0.14 mM, K m ATP 0.98 mM, k cat 93 s-1, k cat/K m Arg 630 s-1 mM-1, k cat/K m ATP 94 s-1 mM-1), which correlates with its structure similarity to others AKs (such as Litopenaeus vannamei, Polybetes pythagoricus, and Rhipicephalus sanguineus) and might be related to its important function in the spider's energetic metabolism. Furthermore, the MD and MM/PBSA analysis suggests that EGCG interacted with LlAK, specifically at ATP/ADP binding site (RMSD <1 nm) and its interaction is energetically favored for its binding stability (-40 to -15 kcal/mol). Moreover, these results are supported by fluorescence quenching analysis (K d 58.3 µM and K a 1.71 × 104 M-1). In this context, LlAK is a promising target for the chemical control of L. laeta, and EGCG could be used in combination with conventional pesticides to manage the population of Loxosceles species in urban areas.

15.
J Bioenerg Biomembr ; 45(6): 511-8, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23873077

RESUMEN

Arginine kinase (AK) is a key enzyme for energetic balance in invertebrates. Although AK is a well-studied system that provides fast energy to invertebrates using the phosphagen phospho-arginine, the structural details on the AK-arginine binary complex interaction remain unclear. Herein, we determined two crystal structures of the Pacific whiteleg shrimp (Litopenaeus vannamei) arginine kinase, one in binary complex with arginine (LvAK-Arg) and a ternary transition state analog complex (TSAC). We found that the arginine guanidinium group makes ionic contacts with Glu225, Cys271 and a network of ordered water molecules. On the zwitterionic side of the amino acid, the backbone amide nitrogens of Gly64 and Val65 coordinate the arginine carboxylate. Glu314, one of proposed acid-base catalytic residues, did not interact with arginine in the binary complex. This residue is located in the flexible loop 310-320 that covers the active site and only stabilizes in the LvAK-TSAC. This is the first binary complex crystal structure of a guanidine kinase in complex with the guanidine substrate and could give insights into the nature of the early steps of phosphagen biosynthesis.


Asunto(s)
Arginina Quinasa/química , Arginina/química , Penaeidae/enzimología , Animales , Arginina/metabolismo , Arginina Quinasa/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Conformación Proteica , Especificidad por Sustrato
16.
Artículo en Inglés | MEDLINE | ID: mdl-23695560

RESUMEN

Thioredoxin (Trx) is a 12 kDa cellular redox protein that belongs to a family of small redox proteins which undergo reversible oxidation to produce a cystine disulfide bond through the transfer of reducing equivalents from the catalytic site cysteine residues (Cys32 and Cys35) to a disulfide substrate. In this study, crystals of thioredoxin 1 from the Pacific whiteleg shrimp Litopenaeus vannamei (LvTrx) were successfully obtained. One data set was collected from each of four crystals at 100 K and the three-dimensional structures of the catalytic cysteines in different redox states were determined: reduced and oxidized forms at 2.00 Šresolution using data collected at a synchrotron-radiation source and two partially reduced structures at 1.54 and 1.88 Šresolution using data collected using an in-house source. All of the crystals belonged to space group P3212, with unit-cell parameters a = 57.5 (4), b = 57.5 (4), c = 118.1 (8) Å. The asymmetric unit contains two subunits of LvTrx, with a Matthews coefficient (VM) of 2.31 Å(3) Da(-1) and a solvent content of 46%. Initial phases were determined by molecular replacement using the crystallographic model of Trx from Drosophila melanogaster as a template. In the present work, LvTrx was overexpressed in Escherichia coli, purified and crystallized. Structural analysis of the different redox states at the Trx active site highlights its reactivity and corroborates the existence of a dimer in the crystal. In the crystallographic structures the dimer is stabilized by several interactions, including a disulfide bridge between Cys73 of each LvTrx monomer, a hydrogen bond between the side chain of Asp60 of each monomer and several hydrophobic interactions, with a noncrystallographic twofold axis.


Asunto(s)
Regulación de la Expresión Génica , Penaeidae , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Animales , Sitios de Unión/fisiología , Cristalización , Cristalografía por Rayos X , Oxidación-Reducción , Penaeidae/genética , Tiorredoxinas/genética
17.
Molecules ; 18(2): 1762-74, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23434862

RESUMEN

The cyclophanes 2,9,25,32-tetraoxo-4,7,27,30-tetrakis(carboxymethyl)-1,4,7,10, 24,27,30,33-octaaza-17,40-dioxa[10.1.10.1]paracyclophane (PO) and 2,9,25,32-tetraoxo-4,7,27,30-tetrakis(carboxymethyl)-1,4,7,10,24,27,30,33-octaaza[10.1.10.1]paracyclophane (PC) were coordinated with iron to form cationic binuclear Fe(III) Fe2PO and Fe2PC complexes, respectively. Their antioxidant capacity, superoxide dismutase and peroxidase mimetic activity, as well as their toxicity toward peripheral blood mononuclear cells (PBMCs) were evaluated. Both Fe2PO and Fe2PC are interesting biomimetics with antioxidant capacity similar to that of ascorbic acid that prevent mortality in cultured PBMCs, with the potential to have bioactive and protective functions in disease animal models.


Asunto(s)
Antioxidantes/farmacología , Complejos de Coordinación/farmacología , Éteres Cíclicos/farmacología , Hierro/farmacología , Absorción , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Citoprotección/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Electrones , Éteres Cíclicos/síntesis química , Éteres Cíclicos/química , Humanos , Concentración de Iones de Hidrógeno , Hierro/química , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Espectrometría de Masas , Oxidación-Reducción/efectos de los fármacos , Peroxidasa/metabolismo , Protones , Espectrofotometría Infrarroja , Superóxido Dismutasa/metabolismo
18.
Food Chem ; 408: 135165, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36527926

RESUMEN

The meat greening is an abnormal pigmentation related to microbiological contamination and lipid oxidation during storage. This color change results from sulfmyoglobin (SulfMb) production promoted by the reaction between metmyoglobin (MetMb), H2O2, and thiol compounds. Spectral studies on cooked meat suggested the production of SulfMb, probably due to the increment of free radicals during thermal treatment. Thus, we evaluated the involvement of free radicals and heme iron in the SulfMb production from horse MetMb and free cysteine (Cys) during thermal treatment. The results confirm that the reaction of SulfMb production at meat muscle pH (5.7-7.2) during heat treatment is a product of free radicals formed from Cys oxidation (SH) and reactive oxygen species (O2-, H2O2). This is catalyzed by the release of heme iron, thus promoting a consecutive reaction having MbFe(IV)O as a reaction intermediate.


Asunto(s)
Cisteína , Peróxido de Hidrógeno , Animales , Caballos , Peróxido de Hidrógeno/química , Mioglobina/química , Metamioglobina/química , Radicales Libres , Oxidación-Reducción , Hierro/química , Hemo
19.
J Agric Food Chem ; 71(46): 17485-17493, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37943570

RESUMEN

Myoglobin is the main factor responsible for muscle pigmentation in tuna; muscle color depends upon changes in the oxidative state of myoglobin. The tuna industry has reported muscle greening after thermal treatment involving metmyoglobin (MetMb), trimethylamine oxide (TMAO), and free cysteine (Cys). It has been proposed that this pigmentation change is due to a disulfide bond between a unique cysteine residue (Cys10) found in tuna MetMb and free Cys. However, no evidence has been given to confirm that this reaction occurs. In this review, new findings about the mechanism of this greening reaction are discussed, showing evidence of how free radicals produced from Cys oxidation under thermal treatment participate in the greening of tuna and horse muscle during thermal treatment. In addition, the reaction conditions are compared to other green myoglobins, such as sulfmyoglobin, verdomyoglobin, and cholemyoglobin.


Asunto(s)
Cisteína , Mioglobina , Animales , Caballos , Mioglobina/química , Cisteína/química , Metamioglobina/química , Oxidación-Reducción , Músculos/metabolismo
20.
J Bioenerg Biomembr ; 44(3): 325-31, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22528393

RESUMEN

Biosynthesis of nucleoside triphosphates is critical for bioenergetics and nucleic acid replication, and this is achieved by nucleoside diphosphate kinase (NDK). As an emerging biological model and the global importance of shrimp culture, we have addressed the study of the Pacific whiteleg shrimp (Litopenaeus vannamei) NDK. We demonstrated its activity and affinity towards deoxynucleoside diphosphates. Also, the quaternary structure obtained by gel filtration chromatography showed that shrimp NDK is a trimer. Affinity was in the micro-molar range for dADP, dGDP, dTDP and except for dCDP, which presented no detectable interaction by isothermal titration calorimetry, as described previously for Plasmodium falciparum NDK. This information is particularly important, as this enzyme could be used to test nucleotide analogs that can block white spot syndrome virus (WSSV) viral replication and to study its bioenergetics role during hypoxia and fasting.


Asunto(s)
Nucleósido Difosfato Quinasas NM23/metabolismo , Animales , Dominio Catalítico , Modelos Moleculares , Nucleósido Difosfato Quinasas NM23/química , Nucleósido Difosfato Quinasas NM23/genética , Proteínas Oncogénicas/química , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Mariscos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA