Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
R Soc Open Sci ; 11(6): 240329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100147

RESUMEN

While ocean acidification (OA) impacts the behaviour of marine organisms, the complexity of neurosystems makes linking behavioural impairments to environmental change difficult. Using a simple model, we exposed Aplysia to ambient or elevated CO2 conditions (approx. 1500 µatm) and tested how OA affected the neuromolecular response of the pleural-pedal ganglia and caused tail withdrawal reflex (TWR) impairment. Under OA, Aplysia relax their tails faster with increased sensorin-A expression, an inhibitor of mechanosensory neurons. We further investigate how OA affects habituation training output, which produced a 'sensitization-like' behaviour and affected vesicle transport and stress response gene expression, revealing an influence of OA on learning. Finally, gabazine did not restore normal behaviour and elicited little molecular response with OA, instead, vesicular transport and cellular signalling link other neurotransmitter processes with TWR impairment. Our study shows the effects of OA on neurological tissue parts that control for behaviour.

2.
Evol Appl ; 17(2): e13655, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38357358

RESUMEN

The majority of the transcribed genome does not have coding potential but these non-coding transcripts play crucial roles in transcriptional and post-transcriptional regulation of protein-coding genes. Regulation of gene expression is important in shaping an organism's response to environmental changes, ultimately impacting their survival and persistence as population or species face global change. However, the roles of long non-coding RNAs (lncRNAs), when confronted with environmental changes, remain largely unclear. To explore the potential role of lncRNAs in fish exposed to ocean acidification (OA), we analyzed publicly available brain RNA-seq data from a coral reef fish Acanthochromis polyacanthus. We annotated the lncRNAs in its genome and examined the expression changes of intergenic lncRNAs (lincRNAs) between A. polyacanthus samples from a natural CO2 seep and a nearby control site. We identified 4728 lncRNAs, including 3272 lincRNAs in this species. Remarkably, 93.03% of these lincRNAs were species-specific. Among the 125 highly expressed lincRNAs and 403 differentially expressed lincRNAs in response to elevated CO2, we observed that lincRNAs were either neighboring or potentially trans-regulating differentially expressed coding genes associated with pH regulation, neural signal transduction, and ion transport, which are known to be important in the response to OA in fish. In summary, lncRNAs may facilitate fish acclimation and mediate the responses of fish to OA by modulating the expression of crucial coding genes, which offers insight into the regulatory mechanisms underlying fish responses to environmental changes.

3.
Sci Rep ; 13(1): 21075, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030737

RESUMEN

Temperature is a primary factor affecting the physiology of ectothermic animals and global warming of water bodies may therefore impact aquatic life. Understanding the effects of near-future predicted temperature changes on the behaviour and underlying molecular mechanisms of aquatic animals is of particular importance, since behaviour mediates survival. In this study, we investigate the effects of developmental temperature on locomotory behaviour and olfactory learning in the zebrafish, Danio rerio. We exposed zebrafish from embryonic stage to either control (28 °C) or elevated temperature (30 °C) for seven days. Overall, warming reduced routine swimming activity and caused upregulation of metabolism and neuron development genes. When exposed to olfactory cues, namely catfish cue, a non-alarming but novel odour, and conspecifics alarming cue, warming differently affected the larvae response to the two cues. An increase in locomotory activity and a large transcriptional reprogramming was observed at elevated temperature in response to novel odour, with upregulation of cell signalling, neuron development and neuron functioning genes. As this response was coupled with the downregulation of genes involved in protein translation and ATP metabolism, novel odour recognition in future-predicted thermal conditions would require energetic trade-offs between expensive baseline processes and responsive functions. To evaluate their learning abilities at both temperatures, larvae were conditioned with a mixture of conspecifics alarm cue and catfish cue. Regardless of temperature, no behavioural nor gene expression changes were detected, reinforcing our findings that warming mainly affects zebrafish molecular response to novel odours. Overall, our results show that future thermal conditions will likely impact developing stages, causing trade-offs following novel olfactory detection in the environment.


Asunto(s)
Odorantes , Pez Cebra , Animales , Pez Cebra/metabolismo , Larva , Natación/fisiología , Temperatura , Fiebre
4.
Commun Biol ; 5(1): 770, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35908086

RESUMEN

Environmental degradation has the potential to alter key mutualisms that underlie the structure and function of ecological communities. How microbial communities associated with fishes vary across populations and in relation to habitat characteristics remains largely unknown despite their fundamental roles in host nutrition and immunity. We find significant differences in the gut microbiome composition of a facultative coral-feeding butterflyfish (Chaetodon capistratus) across Caribbean reefs that differ markedly in live coral cover (∼0-30%). Fish gut microbiomes were significantly more variable at degraded reefs, a pattern driven by changes in the relative abundance of the most common taxa potentially associated with stress. We also demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which may suggest a less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions may be vulnerable to severe coral degradation.


Asunto(s)
Antozoos , Microbioma Gastrointestinal , Microbiota , Animales , Bacterias/genética , Peces
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA