Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 626(7997): 177-185, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38123686

RESUMEN

The discovery of novel structural classes of antibiotics is urgently needed to address the ongoing antibiotic resistance crisis1-9. Deep learning approaches have aided in exploring chemical spaces1,10-15; these typically use black box models and do not provide chemical insights. Here we reasoned that the chemical substructures associated with antibiotic activity learned by neural network models can be identified and used to predict structural classes of antibiotics. We tested this hypothesis by developing an explainable, substructure-based approach for the efficient, deep learning-guided exploration of chemical spaces. We determined the antibiotic activities and human cell cytotoxicity profiles of 39,312 compounds and applied ensembles of graph neural networks to predict antibiotic activity and cytotoxicity for 12,076,365 compounds. Using explainable graph algorithms, we identified substructure-based rationales for compounds with high predicted antibiotic activity and low predicted cytotoxicity. We empirically tested 283 compounds and found that compounds exhibiting antibiotic activity against Staphylococcus aureus were enriched in putative structural classes arising from rationales. Of these structural classes of compounds, one is selective against methicillin-resistant S. aureus (MRSA) and vancomycin-resistant enterococci, evades substantial resistance, and reduces bacterial titres in mouse models of MRSA skin and systemic thigh infection. Our approach enables the deep learning-guided discovery of structural classes of antibiotics and demonstrates that machine learning models in drug discovery can be explainable, providing insights into the chemical substructures that underlie selective antibiotic activity.


Asunto(s)
Antibacterianos , Aprendizaje Profundo , Descubrimiento de Drogas , Animales , Humanos , Ratones , Antibacterianos/química , Antibacterianos/clasificación , Antibacterianos/farmacología , Antibacterianos/toxicidad , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Redes Neurales de la Computación , Algoritmos , Enterococos Resistentes a la Vancomicina/efectos de los fármacos , Modelos Animales de Enfermedad , Piel/efectos de los fármacos , Piel/microbiología , Descubrimiento de Drogas/métodos , Descubrimiento de Drogas/tendencias
2.
Nature ; 545(7652): 112-115, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28445455

RESUMEN

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.


Asunto(s)
Receptor PAR-2/química , Receptor PAR-2/metabolismo , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Anticuerpos Bloqueadores/química , Anticuerpos Bloqueadores/farmacología , Bencimidazoles/química , Bencimidazoles/farmacología , Benzodioxoles/química , Benzodioxoles/farmacología , Alcoholes Bencílicos/química , Alcoholes Bencílicos/farmacología , Cristalografía por Rayos X , Humanos , Imidazoles/química , Imidazoles/farmacología , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/farmacología , Cinética , Ligandos , Modelos Moleculares , Receptor PAR-2/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos
3.
Proc Natl Acad Sci U S A ; 113(49): E7880-E7889, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27864515

RESUMEN

Millions of individuals are infected with and die from tuberculosis (TB) each year, and multidrug-resistant (MDR) strains of TB are increasingly prevalent. As such, there is an urgent need to identify novel drugs to treat TB infections. Current frontline therapies include the drug isoniazid, which inhibits the essential NADH-dependent enoyl-acyl-carrier protein (ACP) reductase, InhA. To inhibit InhA, isoniazid must be activated by the catalase-peroxidase KatG. Isoniazid resistance is linked primarily to mutations in the katG gene. Discovery of InhA inhibitors that do not require KatG activation is crucial to combat MDR TB. Multiple discovery efforts have been made against InhA in recent years. Until recently, despite achieving high potency against the enzyme, these efforts have been thwarted by lack of cellular activity. We describe here the use of DNA-encoded X-Chem (DEX) screening, combined with selection of appropriate physical properties, to identify multiple classes of InhA inhibitors with cell-based activity. The utilization of DEX screening allowed the interrogation of very large compound libraries (1011 unique small molecules) against multiple forms of the InhA enzyme in a multiplexed format. Comparison of the enriched library members across various screening conditions allowed the identification of cofactor-specific inhibitors of InhA that do not require activation by KatG, many of which had bactericidal activity in cell-based assays.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/antagonistas & inhibidores , Pruebas de Sensibilidad Microbiana , Bibliotecas de Moléculas Pequeñas
4.
Chembiochem ; 18(9): 864-871, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28056160

RESUMEN

We have identified and characterized novel potent inhibitors of Bruton's tyrosine kinase (BTK) from a single DNA-encoded library of over 110 million compounds by using multiple parallel selection conditions, including variation in target concentration and addition of known binders to provide competition information. Distinct binding profiles were observed by comparing enrichments of library building block combinations under these conditions; one enriched only at high concentrations of BTK and was competitive with ATP, and another enriched at both high and low concentrations of BTK and was not competitive with ATP. A compound representing the latter profile showed low nanomolar potency in biochemical and cellular BTK assays. Results from kinetic mechanism of action studies were consistent with the selection profiles. Analysis of the co-crystal structure of the most potent compound demonstrated a novel binding mode that revealed a new pocket in BTK. Our results demonstrate that profile-based selection strategies using DNA-encoded libraries form the basis of a new methodology to rapidly identify small molecule inhibitors with novel binding modes to clinically relevant targets.


Asunto(s)
ADN/química , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Agammaglobulinemia Tirosina Quinasa , Sitios de Unión , Línea Celular , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , ADN/metabolismo , Humanos , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo
5.
J Vis Exp ; (203)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38284532

RESUMEN

E3 ligases and proteins targeted for degradation can be induced to form complexes by heterobifunctional molecules in a multi-step process. The kinetics and thermodynamics of the interactions involved contribute to efficiency of ubiquitination and resulting degradation of the protein. Biophysical techniques such as surface plasmon resonance (SPR), biolayer interferometry (BLI), and isothermal titration calorimetry (ITC) provide valuable information that can be used in the optimization of those interactions. Using two model systems, a biophysical assay tool kit for understanding the cooperativity of ternary complex formation and the impact of the 'hook effect' on binding kinetics was established. In one case, a proteolysis targeting chimera (PROTAC) molecule that induced ternary complex formation between Brd4BD2 and VHL was evaluated. The heterobifunctional molecule, MZ1, has nM affinities for both the Brd4BD2 protein (SPR KD = 1 nM, ITC KD = 4 nM) and the VHL complex (SPR KD = 29 nM, ITC KD = 66 nM). For this system, robust SPR, BLI, and ITC assays were developed that reproduced published results demonstrating the cooperativity of ternary complex formation. In the other case, a molecule that induced ternary complexes between a 46.0 kDa protein, PPM1D, and cereblon [CRBN (319-442)] was studied. The heterobifunctional molecule, BRD-5110, has an SPR KD = 1 nM for PPM1D but much weaker binding against the truncated CRBN (319-442) complex (SPR KD= ~ 3 µM). In that case, the binding for CRBN in SPR was not saturable, resulting in a "hook-effect". Throughput and reagent requirements for SPR, BLI, and ITC were evaluated, and general recommendations for their application to PROTAC projects were provided.


Asunto(s)
Quimera Dirigida a la Proteólisis , Factores de Transcripción , Factores de Transcripción/metabolismo , Proteínas Nucleares/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo
8.
J Med Chem ; 64(19): 14377-14425, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34569791

RESUMEN

This study describes a novel series of UDP-N-acetylglucosamine acyltransferase (LpxA) inhibitors that was identified through affinity-mediated selection from a DNA-encoded compound library. The original hit was a selective inhibitor of Pseudomonas aeruginosa LpxA with no activity against Escherichia coli LpxA. The biochemical potency of the series was optimized through an X-ray crystallography-supported medicinal chemistry program, resulting in compounds with nanomolar activity against P. aeruginosa LpxA (best half-maximal inhibitory concentration (IC50) <5 nM) and cellular activity against P. aeruginosa (best minimal inhibitory concentration (MIC) of 4 µg/mL). Lack of activity against E. coli was maintained (IC50 > 20 µM and MIC > 128 µg/mL). The mode of action of analogues was confirmed through genetic analyses. As expected, compounds were active against multidrug-resistant isolates. Further optimization of pharmacokinetics is needed before efficacy studies in mouse infection models can be attempted. To our knowledge, this is the first reported LpxA inhibitor series with selective activity against P. aeruginosa.


Asunto(s)
Aciltransferasas/antagonistas & inhibidores , Antibacterianos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/química , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/efectos de los fármacos , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
9.
SLAS Discov ; 23(5): 429-436, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29316408

RESUMEN

The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.


Asunto(s)
ADN/genética , Mutación/efectos de los fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Sitio Alostérico/efectos de los fármacos , Línea Celular , Células HEK293 , Humanos , Ligandos , Proteínas/genética , Receptor PAR-2 , Receptores Acoplados a Proteínas G/genética
11.
ACS Med Chem Lett ; 8(2): 239-244, 2017 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-28197319

RESUMEN

Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound 1, a 1.5 µM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound 1 bound to Mcl-1 in a ß-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein-ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound 26 is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 µM and Bcl-xL at >99 µM, and induces cleaved caspase-3 in MV4-11 cells with an IC50 of 3 µM after 6 h.

12.
ACS Chem Biol ; 12(11): 2730-2736, 2017 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-29043777

RESUMEN

ATAD2 (ANCCA) is an epigenetic regulator and transcriptional cofactor, whose overexpression has been linked to the progress of various cancer types. Here, we report a DNA-encoded library screen leading to the discovery of BAY-850, a potent and isoform selective inhibitor that specifically induces ATAD2 bromodomain dimerization and prevents interactions with acetylated histones in vitro, as well as with chromatin in cells. These features qualify BAY-850 as a chemical probe to explore ATAD2 biology.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Sondas Moleculares/química , Sondas Moleculares/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , ATPasas Asociadas con Actividades Celulares Diversas/química , Línea Celular Tumoral , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Descubrimiento de Drogas , Histonas/metabolismo , Humanos , Ligandos , Modelos Moleculares , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
13.
J Med Chem ; 60(13): 5521-5542, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28498658

RESUMEN

Through fragment-based drug design focused on engaging the active site of IRAK4 and leveraging three-dimensional topology in a ligand-efficient manner, a micromolar hit identified from a screen of a Pfizer fragment library was optimized to afford IRAK4 inhibitors with nanomolar potency in cellular assays. The medicinal chemistry effort featured the judicious placement of lipophilicity, informed by co-crystal structures with IRAK4 and optimization of ADME properties to deliver clinical candidate PF-06650833 (compound 40). This compound displays a 5-unit increase in lipophilic efficiency from the fragment hit, excellent kinase selectivity, and pharmacokinetic properties suitable for oral administration.


Asunto(s)
Descubrimiento de Drogas , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Isoquinolinas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Administración Oral , Relación Dosis-Respuesta a Droga , Humanos , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Isoquinolinas/administración & dosificación , Isoquinolinas/química , Lactamas , Modelos Moleculares , Estructura Molecular , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
14.
J Biomol Screen ; 19(7): 1000-13, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24525871

RESUMEN

Production of novel soluble and membrane-localized protein targets for functional and affinity-based screening has often been limited by the inability of traditional protein-expression systems to generate recombinant proteins that have properties similar to those of their endogenous counterparts. Such targets have often been labeled as challenging. Although biological validation of these challenging targets for specific disease areas may be strong, discovery of small-molecule modulators can be greatly delayed or completely halted due to target-expression issues. In this article, the limitations of traditional protein-expression systems will be discussed along with new systems designed to overcome these challenges. Recent work in this field has focused on two major areas for both soluble and membrane targets: construct-design strategies to improve expression levels and new hosts that can carry out the posttranslational modifications necessary for proper target folding and function. Another area of active research has been on the reconstitution of solubilized membrane targets for both structural analysis and screening. Finally, the potential impact of these new systems on the output of small-molecule screening campaigns will be discussed.


Asunto(s)
Química Farmacéutica/métodos , Regulación de la Expresión Génica , Procesamiento Proteico-Postraduccional , Animales , Codón , Bases de Datos de Proteínas , Diseño de Fármacos , Escherichia coli/metabolismo , Células HEK293 , Humanos , Insectos , Fosforilación , Proteómica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes/química , Tecnología Farmacéutica/métodos
15.
J Med Chem ; 55(2): 852-70, 2012 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-22243413

RESUMEN

Thymidylate kinase (TMK) is a potential chemotherapeutic target because it is directly involved in the synthesis of an essential component, thymidine triphosphate, in DNA replication. All reported TMK inhibitors are thymidine analogues, which might retard their development as potent therapeutics due to cell permeability and off-target activity against human TMK. A small molecule hit (1, IC(50) = 58 µM), which has reasonable inhibition potency against Pseudomonas aeruginosa TMK (PaTMK), was identified by the analysis of the binding mode of thymidine or TP(5)A in a PaTMK homology model. This hit (1) was cocrystallized with PaTMK, and several potent PaTMK inhibitors (leads, 46, 47, 48, and 56, IC(50) = 100-200 nM) were synthesized using computer-aided design approaches including virtual synthesis/screening, which was used to guide the design of inhibitors. The binding mode of the optimized leads in PaTMK overlaps with that of other bacterial TMKs but not with human TMK, which shares few common features with the bacterial enzymes. Therefore, the optimized TMK inhibitors described here should be useful for the development of antibacterial agents targeting TMK without undesired off-target effects. In addition, an inhibition mechanism associated with the LID loop, which mimics the process of phosphate transfer from ATP to dTMP, was proposed based on X-ray cocrystal structures, homology models, and structure-activity relationship results.


Asunto(s)
Antibacterianos/síntesis química , Imidazoles/síntesis química , Nucleósido-Fosfato Quinasa/antagonistas & inhibidores , Pseudomonas aeruginosa/enzimología , Piridinas/síntesis química , Pirimidinas/síntesis química , Timidina/química , Antibacterianos/química , Antibacterianos/farmacología , Cristalografía por Rayos X , Humanos , Imidazoles/química , Imidazoles/farmacología , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Conformación Molecular , Imitación Molecular , Nucleósido-Fosfato Quinasa/química , Unión Proteica , Pseudomonas aeruginosa/efectos de los fármacos , Piridinas/química , Piridinas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Alineación de Secuencia
16.
Chem Biol Drug Des ; 75(3): 257-68, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20659109

RESUMEN

We have employed a fragment-based screen against wild-type (NL4-3) HIV protease (PR) using the Active Sight fragment library and X-ray crystallography. The experiments reveal two new binding sites for small molecules. PR was co-crystallized with fragments, or crystals were soaked in fragment solutions, using five crystal forms, and 378 data sets were collected to 2.3-1.3 A resolution. Fragment binding induces a distinct conformation and specific crystal form of TL-3 inhibited PR during co-crystallization. One fragment, 2-methylcyclohexanol, binds in the 'exo site' adjacent to the Gly(16)Gly(17)Gln(18)loop where the amide of Gly(17)is a specific hydrogen bond donor, and hydrophobic contacts occur with the side chains of Lys(14)and Leu(63). Another fragment, indole-6-carboxylic acid, binds on the 'outside/top of the flap' via hydrophobic contacts with Trp(42), Pro(44), Met(46), and Lys(55), a hydrogen bond with Val(56), and a salt-bridge with Arg(57). 2-acetyl-benzothiophene also binds at this site. This study is the first fragment-based crystallographic screen against HIV PR, and the first time that fragments were screened against an inhibitor-bound drug target to search for compounds that both bind to novel sites and stabilize the inhibited conformation of the target.


Asunto(s)
Inhibidores de la Proteasa del VIH/química , Proteasa del VIH/química , Sitios de Unión , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Dominio Catalítico , Cristalografía por Rayos X , Ciclohexanoles/química , Ciclohexanoles/farmacología , Proteasa del VIH/genética , Proteasa del VIH/metabolismo , Inhibidores de la Proteasa del VIH/farmacología , Humanos , Enlace de Hidrógeno , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiofenos/química , Tiofenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA