Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Microbiol ; 23(12): e13385, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34392593

RESUMEN

Lipid microdomains or lipid rafts are dynamic and tightly ordered regions of the plasma membrane. In mammalian cells, they are enriched in cholesterol, glycosphingolipids, Glycosylphosphatidylinositol-anchored and signalling-related proteins. Several studies have suggested that mammalian pattern recognition receptors are concentrated or recruited to lipid domains during host-pathogen association to enhance the effectiveness of host effector processes. However, pathogens have also evolved strategies to exploit these domains to invade cells and survive. In fungal organisms, a complex cell wall network usually mediates the first contact with the host cells. This cell wall may contain virulence factors that interfere with the host membrane microdomains dynamics, potentially impacting the infection outcome. Indeed, the microdomain disruption can dampen fungus-host cell adhesion, phagocytosis and cellular immune responses. Here, we provide an overview of regulatory strategies employed by pathogenic fungi to engage with and potentially subvert the lipid microdomains of host cells. TAKE AWAY: Lipid microdomains are ordered regions of the plasma membrane enriched in cholesterol, glycosphingolipids (GSL), GPI-anchored and signalling-related proteins. Pathogen recognition by host immune cells can involve lipid microdomain participation. During this process, these domains can coalesce in larger complexes recruiting receptors and signalling proteins, significantly increasing their signalling abilities. The antifungal innate immune response is mediated by the engagement of pathogen-associated molecular patterns to pattern recognition receptors (PRRs) at the plasma membrane of innate immune cells. Lipid microdomains can concentrate or recruit PRRs during host cell-fungi association through a multi-interactive mechanism. This association can enhance the effectiveness of host effector processes. However, virulence factors at the fungal cell surface and extracellular vesicles can re-assembly these domains, compromising the downstream signalling and favouring the disease development. Lipid microdomains are therefore very attractive targets for novel drugs to combat fungal infections.


Asunto(s)
Microdominios de Membrana , Micosis , Animales , Membrana Celular , Glicoesfingolípidos , Fagocitosis , Receptores de Reconocimiento de Patrones
2.
Fungal Genet Biol ; 121: 46-55, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30268928

RESUMEN

Trichosporon asahii shares with Cryptococcus species the ability to produce glucuronoxylomannan (GXM), an immunomodulatory fungal polysaccharide. The ability of other opportunistic species of Trichosporon to produce GXM-like polysaccharides is unknown. In this study, we observed that T. mucoides was less pathogenic than T. asahii in an infection model of Galleria mellonella and asked whether this difference was related to the characteristics of GXM-like molecules. Compositional analysis of samples obtained from both pathogens indicated that the components of GXM (mannose, xylose and glucuronic acid) were, in fact, detected in T. mucoides and T. asahii glycans. The identification of the T. mucoides glycan as a GXM-like molecule was confirmed by its reactivity with a monoclonal antibody raised to cryptococcal GXM and incorporation of the glycan into the cell surface of an acapsular mutant of C. neoformans. T. mucoides and T. asahii glycans differed in molecular dimensions. The antibody to cryptococcal GXM recognized T. mucoides yeast forms less efficiently than T. asahii cells. Experiments with animal cells revealed that the T. mucoides glycan manifested antiphagocytic properties. Comparative phagocytosis assays revealed that T. mucoides and T. asahii were similarly recognized by macrophages. However, fungal association with the phagocytes did not depend on the typical receptors of cryptococcal GXM, as concluded from assays using macrophages obtained from Tlr2-/- and Cd14-/- knockout mice. These results add T. mucoides to the list of fungal pathogens producing GXM-like glycans, but also indicate a high functional diversity of this major fungal immunogen.


Asunto(s)
Lepidópteros/genética , Fagocitosis/genética , Polisacáridos/genética , Animales , Cryptococcus neoformans/genética , Lepidópteros/microbiología , Receptores de Lipopolisacáridos/genética , Macrófagos/microbiología , Ratones Noqueados , Polisacáridos/biosíntesis , Polisacáridos/química , Receptor Toll-Like 2/genética , Trichosporon/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA