Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 320(4): C602-C612, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296286

RESUMEN

Cholinesterase inhibitors are used in postmenopausal women for the treatment of neurodegenerative diseases. Despite their widespread use in the clinical practice, little is known about the impact of augmented cholinergic signaling on cardiac function under reduced estrogen conditions. To address this gap, we subjected a genetically engineered murine model of systemic vesicular acetylcholine transporter overexpression (Chat-ChR2) to ovariectomy and evaluated cardiac parameters. Left-ventricular function was similar between Chat-ChR2 and wild-type (WT) mice. Following ovariectomy, WT mice showed signs of cardiac hypertrophy. Conversely, ovariectomized (OVX) Chat-ChR2 mice evolved to cardiac dilation and failure. Transcript levels for cardiac stress markers atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were similarly upregulated in WT/OVX and Chat-ChR2/OVX mice. 17ß-Estradiol (E2) treatment normalized cardiac parameters in Chat-ChR2/OVX to the Chat-ChR2/SHAM levels, providing a link between E2 status and the aggravated cardiac response in this model. To investigate the cellular basis underlying the cardiac alterations, ventricular myocytes were isolated and their cellular area and contractility were assessed. Myocytes from WT/OVX mice were wider than WT/SHAM, an indicative of concentric hypertrophy, but their fractional shortening was similar. Conversely, Chat-ChR2/OVX myocytes were elongated and presented contractile dysfunction. E2 treatment again prevented the structural and functional changes in Chat-ChR2/OVX myocytes. We conclude that hypercholinergic mice under reduced estrogen conditions do not develop concentric hypertrophy, a critical compensatory adaptation, evolving toward cardiac dilation and failure. This study emphasizes the importance of understanding the consequences of cholinesterase inhibition, used clinically to treat dementia, for cardiac function in postmenopausal women.


Asunto(s)
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Estrógenos/deficiencia , Corazón/inervación , Hipertrofia Ventricular Izquierda/metabolismo , Miocitos Cardíacos/metabolismo , Disfunción Ventricular Izquierda/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Estradiol/farmacología , Terapia de Reemplazo de Estrógeno , Femenino , Frecuencia Cardíaca , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/prevención & control , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Ovariectomía , Transducción de Señal , Disfunción Ventricular Izquierda/patología , Disfunción Ventricular Izquierda/fisiopatología , Disfunción Ventricular Izquierda/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Proteínas de Transporte Vesicular de Acetilcolina/genética
2.
Am J Physiol Heart Circ Physiol ; 320(1): H352-H363, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124885

RESUMEN

Alamandine is the newest identified peptide of the renin-angiotensin system (RAS) and has protective effects in the cardiovascular system. Although the involvement of classical RAS components in the genesis and progression of cardiac remodeling is well known, less is known about the effects of alamandine. Therefore, in the present study we investigated the effects of alamandine on cardiac remodeling induced by transverse aortic constriction (TAC) in mice. Male mice (C57BL/6), 10-12 wk of age, were divided into three groups: sham operated, TAC, and TAC + ALA (30 µg/kg/day alamandine for 14 days). The TAC surgery was performed under ketamine and xylazine anesthesia. At the end of treatment, the animals were submitted to echocardiographic examination and subsequently euthanized for tissue collection. TAC induced myocyte hypertrophy, collagen deposition, and the expression of matrix metalloproteinase (MMP)-2 and transforming growth factor (TGF)-ß in the left ventricle. These markers of cardiac remodeling were reduced by oral treatment with alamandine. Western blotting analysis showed that alamandine prevents the increase in ERK1/2 phosphorylation and reverts the decrease in 5'-adenosine monophosphate-activated protein kinase (AMPK)α phosphorylation induced by TAC. Although both TAC and TAC + ALA increased SERCA2 expression, the phosphorylation of phospholamban in the Thr17 residue was increased solely in the alamandine-treated group. The echocardiographic data showed that there are no functional or morphological alterations after 2 wk of TAC. Alamandine treatment prevents myocyte hypertrophy and cardiac fibrosis induced by TAC. Our results reinforce the cardioprotective role of alamandine and highlight its therapeutic potential for treating heart diseases related to pressure overload conditions.NEW & NOTEWORTHY Alamandine is the newest identified component of the renin-angiotensin system protective arm. Considering the beneficial effects already described so far, alamandine is a promising target for cardiovascular disease treatment. We demonstrated for the first time that alamandine improves many aspects of cardiac remodeling induced by pressure overload, including cell hypertrophy, fibrosis, and oxidative stress markers.


Asunto(s)
Fármacos Cardiovasculares/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Hipertrofia Ventricular Izquierda/prevención & control , Oligopéptidos/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Aorta/fisiopatología , Aorta/cirugía , Proteínas de Unión al Calcio/metabolismo , Colágeno/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/fisiopatología , Ligadura , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Fosforilación , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
3.
Am J Physiol Heart Circ Physiol ; 316(1): H123-H133, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339496

RESUMEN

We have recently described a new peptide of the renin-angiotensin system, alamandine, a derivative of angiotensin-(1-7). Mas-related G protein-coupled receptor member D (MrgD) was identified as its receptor. Although similar cardioprotective effects of alamandine to those of angiotensin-(1-7) have been described, the significance of this peptide in heart function is still elusive. We aimed to evaluate the functional role of the alamandine receptor MrgD in the heart using MrgD-deficient mice. MrgD was localized in cardiomyocytes by immunofluorescence using confocal microscopy. High-resolution echocardiography was performed in wild-type and MrgD-deficient mice (2 and 12 wk old) under isoflurane anesthesia. Standard B-mode images were obtained in the right and left parasternal long and short axes for morphological and functional assessment and evaluation of cardiac deformation. Additional heart function evaluation was performed using Langendorff isolated heart preparations and inotropic measurements of isolated cardiomyocytes. Immunofluorescence indicated that the MrgD receptor is expressed in cardiomyocytes, mainly in the membrane and perinuclear and nuclear regions. Echocardiography showed left ventricular remodeling and severe dysfunction in MrgD-deficient mice. Strikingly, MrgD-deficient mice presented a pronounced dilated cardiomyopathy with a marked decrease in systolic function. Echocardiographic changes were supported by the data obtained in isolated hearts and inotropic measurements in cardiomyocytes. Our data add new evidence for a major role for alamandine/MrgD in the heart. Furthermore, our results indicate that we have identified a new gene implicated in dilated cardiomyopathy, unveiling a new target for translational approaches aimed to treat heart diseases. NEW & NOTEWORTHY The renin-angiotensin system is a key target for cardiovascular therapy. We have recently identified a new vasodepressor/cardioprotective angiotensin, alamandine. Here, we unmasked a key role for its receptor, Mas-related G protein-coupled receptor member D (MrgD), in heart function. The severe dilated cardiomyopathy observed in MrgD-deficient mice warrants clinical and preclinical studies to unveil its potential use in cardiovascular therapy.


Asunto(s)
Cardiomiopatía Dilatada/genética , Eliminación de Gen , Receptores Acoplados a Proteínas G/genética , Animales , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Receptores Acoplados a Proteínas G/metabolismo , Remodelación Ventricular
4.
Clin Sci (Lond) ; 133(5): 629-643, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30737255

RESUMEN

Aims: The renin-angiotensin system (RAS) plays an important role in the pathophysiology of vascular diseases, especially as a mediator of inflammation and tissue remodelling. Alamandine (Ala1-angiotensin-(1-7)) is a new biologically active peptide from the RAS, interacting with Mas-related G-protein-coupled receptor member D. Although a growing number of studies reveal the cardioprotective effects of alamandine, there is a paucity of data on its participation in vascular remodelling associated events. In the present study, we investigated the effects of alamandine on ascending aorta remodelling after transverse aortic constriction (TAC) in mice. Methods and results: C57BL/6J male mice were divided into the following groups: Sham (sham-operated), TAC (operated) and TAC+ALA (operated and treated with alamandine-HPßCD (2-Hydroxypropyl-ß-cyclodextrin), 30 µg/kg/day, by gavage). Oral administration of alamandine for 14 days attenuated arterial remodelling by decreasing ascending aorta media layer thickness and the cells density in the adventitia induced by TAC. Alamandine administration attenuated ascending aorta fibrosis induced by TAC, through a reduction in the following parameters; total collagen deposition, expression collagen III and transforming growth factor-ß (TGF-ß) transcripts, matrix metalloproteinases (MMPs) activity and vascular expression of MMP-2. Importantly, alamandine decreased vascular expression of proinflammatory genes as CCL2, tumour necrosis factor α (TNF-α) and interleukin-1ß (IL-1ß), and was able to increase expression of MRC1 and FIZZ1, pro-resolution markers, after TAC surgery. Conclusion: Alamandine treatment attenuates vascular remodelling after TAC, at least in part, through anti-fibrotic and anti-inflammatory effects. Hence, this work opens new avenues for the use of this heptapeptide also as a therapeutic target for vascular disease.


Asunto(s)
Antiinflamatorios/farmacología , Aorta Torácica/efectos de los fármacos , Enfermedades de la Aorta/prevención & control , Oligopéptidos/farmacología , Remodelación Vascular/efectos de los fármacos , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/fisiopatología , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Mediadores de Inflamación/metabolismo , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Mediators Inflamm ; 2019: 2401081, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30918468

RESUMEN

The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1ß transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.


Asunto(s)
Angiotensina I/farmacología , Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Oligopéptidos/farmacología , Fragmentos de Péptidos/farmacología , Animales , Células Cultivadas , Interleucina-4/farmacología , Masculino , Ratones , Ratones Endogámicos BALB C , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
Curr Hypertens Rep ; 20(2): 17, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29541937

RESUMEN

PURPOSE OF REVIEW: The purpose of this review was to summarize the current knowledge on the role of angiotensin-(1-7) [Ang-(1-7)] and alamandine in experimental hypertension and atherosclerosis. RECENT FINDINGS: The renin-angiotensin system (RAS) is a very complex system, composed of a cascade of enzymes, peptides, and receptors, known to be involved in the pathogenesis of hypertension and atherosclerosis. Ang-(1-7), identified and characterized in 1987, and alamandine, discovered 16 years after, are the newest two main effector molecules from the RAS, protecting the vascular system against hypertension and atherosclerosis. While the beneficial effects of Ang-(1-7) have been widely studied in several experimental models of hypertension, much less studies were performed in experimental models of atherosclerosis. Alamandine has shown similar vascular effects to Ang-(1-7), namely, endothelial-dependent vasorelaxation mediated by nitric oxide and hypotensive effects in experimental hypertension. There are few studies on the effects of alamandine on atherosclerosis.


Asunto(s)
Angiotensina I/metabolismo , Aterosclerosis , Hipertensión , Oligopéptidos/metabolismo , Fragmentos de Péptidos/metabolismo , Animales , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Humanos , Hipertensión/metabolismo , Hipertensión/fisiopatología , Modelos Teóricos , Sistema Renina-Angiotensina/fisiología , Vasodilatación/fisiología
7.
Exp Mol Pathol ; 104(3): 227-234, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29758186

RESUMEN

Diabetes mellitus is a syndrome with multiple etiologies, characterized by chronic hyperglycemia that increases the production of reactive oxygen species and decreases antioxidant defenses. The present study evaluated oxidative stress parameters and protein nitration in myenteric neurons in the jejunum in diabetic rats supplemented with l-glutathione. Rats (90 days of age) were distributed into four groups (n = 6/group): normoglycemic (N), normoglycemic supplemented with l-glutathione (NGT), diabetic (D), and diabetic supplemented with l-glutathione (DGT). At 210 days of age, the animals were sacrificed, and the jejunum was collected, washed, and subjected to various procedures: tert-butyl hydroperoxide chemiluminescence (CL), determination of total antioxidant capacity (TAC), determination of catalase activity, quantification of nitric oxide (NO), and double-labeling of HuC/D-immunoreactive myenteric neurons and nitrotyrosine (3-NT). Diabetes increased oxidative stress in the jejunum in the D group, reflected by increases in lipid peroxidation, TAC, catalase activity, and NO. The D group exhibited an increase in the percentage of myenteric neurons that were double-labeled with 3-NT. Supplementation with l-glutathione did not cause differences in the average CL curves between the D and DGT groups, but reductions of TAC and catalase activity were observed. Supplementation with l-glutathione promoted a reduction of neurons that contained 3-NT in the DGT group. Diabetes mellitus promoted oxidative stress in the jejunum, and supplementation with l-glutathione improved oxidative status by preventing protein nitration in myenteric neurons in diabetic animals that received supplementation.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Suplementos Dietéticos , Glutatión/administración & dosificación , Yeyuno/efectos de los fármacos , Plexo Mientérico/efectos de los fármacos , Neuronas/efectos de los fármacos , Óxido Nítrico/metabolismo , Proteínas/química , Animales , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Yeyuno/metabolismo , Yeyuno/patología , Masculino , Plexo Mientérico/metabolismo , Plexo Mientérico/patología , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar
8.
Tumour Biol ; 37(8): 10753-61, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26873487

RESUMEN

TGF-ß1 and oxidative stress are involved in cancer progression, but in melanoma, their role is still controversial. Our aim was to correlate plasma TGF-ß1 levels and systemic oxidative stress biomarkers in patients with melanoma, with or without disease metastasis, to understand their participation in melanoma progression. Thirty patients were recruited for melanoma surveillance, together with 30 healthy volunteers. Patients were divided into two groups: Non-metastasis, comprising patients with tumor removal and no metastatic episode for 3 years; and Metastasis, comprising patients with a metastatic episode. The plasmatic cytokines TGF-ß1, IL-1 ß, and TNF-α were analyzed by ELISA. For oxidative stress, the following assays were performed: malondialdehyde (MDA), advanced oxidation protein products (AOPP) levels, total radical-trapping antioxidant parameter (TRAP) and thiol in plasma, and lipid peroxidation, SOD and catalase activity and GSH in erythrocytes. Patients with a metastatic episode had less circulating TGF-ß1 and increased TRAP, thiol, AOPP and lipid peroxidation levels. MDA was increased in both melanoma groups, while catalase, GSH, and IL-1ß was decreased in Non-metastasis patients. Significant negative correlations were observed between TGF-ß1 levels and systemic MDA, and TGF-ß1 levels and systemic AOPP, while a positive correlation was observed between TGF-ß1 levels and erythrocyte GSH. Lower levels of TGF-ß1 were related to increased oxidative stress in Metastasis patients, reinforcing new evidence that in melanoma TGF-ß1 acts as a tumor suppressor, inhibiting tumor relapse. These findings provide new knowledge concerning this cancer pathophysiology, extending the possibilities of investigating new therapies based on this evidence.


Asunto(s)
Melanoma/secundario , Proteínas de Neoplasias/sangre , Factor de Crecimiento Transformador beta1/sangre , Productos Avanzados de Oxidación de Proteínas/sangre , Antioxidantes/análisis , Biomarcadores , Catalasa/sangre , Citocinas/sangre , Progresión de la Enfermedad , Femenino , Disulfuro de Glutatión/sangre , Humanos , Peroxidación de Lípido , Masculino , Malondialdehído/sangre , Melanoma/sangre , Persona de Mediana Edad , Proteínas de Neoplasias/fisiología , Estrés Oxidativo , Compuestos de Sulfhidrilo/sangre , Superóxido Dismutasa/sangre , Factor de Crecimiento Transformador beta1/fisiología
9.
Peptides ; 171: 171094, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37696437

RESUMEN

OBJECTIVE: Pressure overload can result in significant changes to the structure of blood vessels, a process known as vascular remodeling. High levels of tension can cause vascular inflammation, fibrosis, and structural alterations to the vascular wall. Prior research from our team has demonstrated that the oral administration of alamandine can promote vasculoprotective effects in mice aorta that have undergone transverse aortic constriction (TAC). Furthermore, changes in local hemodynamics can affect the right and left carotid arteries differently after TAC. Thus, in this study, we aimed to assess the effects of alamandine treatment on right carotid remodeling and the expression of oxidative stress-related substances induced by TAC. METHODS AND RESULTS: Male C57BL/6 mice were categorized into three groups: Sham, TAC, and TAC treated with alamandine (TAC+ALA). Alamandine treatment was administered orally by gavage (30 µg/kg/day), starting three days before the surgery, and continuing for a period of fourteen days. Morphometric analysis of hematoxylin and eosin-stained sections revealed that TAC induced hypertrophic and positive remodeling in the right carotid artery. Picrosirius Red staining also demonstrated an increase in total collagen deposition in the right carotid artery due to TAC-induced vascular changes. Alamandine treatment effectively prevented the increase in reactive oxygen species production and depletion of nitric oxide levels, which were induced by TAC. Finally, alamandine treatment was also shown to prevent the increased expression of nuclear factor erythroid 2-related factor 2 and 3-nitrotyrosine that were induced by TAC. CONCLUSION: Our results suggest that alamandine can effectively attenuate pathophysiological stress in the right carotid artery of animals subjected to TAC.


Asunto(s)
Arterias Carótidas , Estrés Oxidativo , Masculino , Ratones , Animales , Constricción , Ratones Endogámicos C57BL , Arterias Carótidas/cirugía , Remodelación Ventricular , Modelos Animales de Enfermedad
10.
Int Immunopharmacol ; 115: 109583, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36610330

RESUMEN

Nephrotic syndrome (NS) is associated with kidney dysfunction and is an important cause of morbidity and mortality in industrialized countries. Here, we evaluated the effects of the phosphodiesterase-4 (PDE-4) inhibitors rolipram and roflumilast on a doxorubicin-induced NS model. Early-stage rolipram treatment preserved glomerular filtration barrier function, as indicated by reduced serum protein and albumin loss and the prevention of hypercholesterolemia. These effects were associated with reduced glomerular and tubular lesions and abrogated renal cell apoptosis. In addition, rolipram treatment reduced inflammation, which was characterized by a decrease in macrophage accumulation and reduced levels of CCL2 and TNF in the kidneys. Rolipram also reduced renal fibrosis, which was associated with decreased α-smooth muscle actin (α-SMA) area and increased metalloproteinase 9 (MMP9) activity in renal tissue. Late-stage rolipram or roflumilast treatment preserved glomerular filtration barrier function, as characterized by reduced serum albumin loss, decreased proteinuria, and the prevention of hypercholesterolemia. Importantly, only roflumilast treatment was associated with a reduction in glomerular and tubular lesions at this time point. In addition, both rolipram and roflumilast reduced renal tissue fibrosis and MMP9 activity in renal tissue.


Asunto(s)
Hipercolesterolemia , Enfermedades Renales , Inhibidores de Fosfodiesterasa 4 , Ratones , Animales , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Inhibidores de Fosfodiesterasa 4/farmacología , Rolipram/farmacología , Rolipram/uso terapéutico , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Metaloproteinasa 9 de la Matriz , Riñón/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Modelos Animales de Enfermedad , Fibrosis
11.
Pathol Res Pract ; 216(11): 153218, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33002848

RESUMEN

Malignant melanoma is the most dangerous form of skin cancer. Despite new therapies for melanoma treatment, effective therapy is mainly limited by excessive metastasis. Currently, the factors determining metastasis development are not elucidated, but oxidative stress was suggested to be involved. To this end, we analyzed oxidative stress parameters during the metastatic development using the syngeneic B16F10 melanoma model. An increase in blood plasma lipid peroxidation occurred at the earliest stage of the disease, with a progressive decrease in oxidative damage and an increase in antioxidant defense. Vice versa, increased lipid peroxidation and 3-nitrotyrosine, and decreased antioxidant parameters were observed in the metastatic nodules throughout the disease. This was concomitant with a progressive increase in vascular endothelial growth factor and proliferating cell nuclear antigen. We conclude that the oxidative stress in the bloodstream decreases during the metastatic process and that nitrosative stress increases during the proliferation and growth of metastatic nodules in the tumor microenvironment. These results will help to better understand the role of oxidative stress during melanoma metastasis.


Asunto(s)
Neoplasias Pulmonares/secundario , Melanoma/secundario , Metástasis de la Neoplasia/patología , Estrés Oxidativo/fisiología , Neoplasias Cutáneas/patología , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Neoplasias Pulmonares/metabolismo , Melanoma/metabolismo , Ratones , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Cutáneas/metabolismo
12.
Auton Neurosci ; 227: 102675, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32474374

RESUMEN

Considering the antioxidant, neuroprotective, inflammatory and nitric oxide modulatory actions of quercetin, the aim of this study was to test the effect of quercetin administration in drinking water (40 mg/day/rat) on neuronal nitric oxide synthase (nNOS), vasoactive intestinal peptide (VIP), overall population of myenteric neurons (HuC/D) and nitric oxide (NO) levels in the jejunal samples from diabetic rats. Male Wistar rats were distributed into four groups (8 rats per group): euglycemic (E), euglycemic administered with quercetin (E+Q), diabetic (D) and diabetic administered with quercetin (D+Q). Rats were induced to diabetes with streptozotocin (35mg/kg/iv) and, after 120 days, the proximal jejunum were collected and processed for immunohistochemical (VIP, nNOS and HuC/D) and chemiluminescence (quantification of tissue NO levels) techniques. Diabetes mellitus reduced the number of nNOS-IR (immunoreactive) (p <0.05) and HuC/D-IR (p <0.001) neurons, however, promoted an increased morphometric area of nNOS-IR neurons (p <0.001) and VIP-IR varicosities (p <0.05). In D+Q group, neuroplasticity effects were observed on HuC/D-IR neurons, accompanied by a reduction of cell body area of neurons nNOS- and VIP-IR varicosities (p <0.05). The NO levels were increased in the E+Q (p <0.05) and D+Q group (p <0.001) compared to the control group. In conclusion, the results showed that quercetin supplementation increased the bioavailability of NO in the jejunum in euglycemic and mitigate the effects of diabetes on nNOS-IR neurons and VIP-IR varicosities in the myenteric plexus of diabetic rats.


Asunto(s)
Antioxidantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Yeyuno/efectos de los fármacos , Plexo Mientérico/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Óxido Nítrico Sintasa de Tipo I/efectos de los fármacos , Óxido Nítrico/metabolismo , Quercetina/farmacología , Péptido Intestinal Vasoactivo/efectos de los fármacos , Animales , Antioxidantes/administración & dosificación , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Masculino , Plexo Mientérico/patología , Quercetina/administración & dosificación , Ratas , Ratas Wistar
13.
14.
J Renin Angiotensin Aldosterone Syst ; 19(3): 1470320318789332, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30024321

RESUMEN

The vasodilatory effect of angiotensin-(1-7) seems to vary between sexes, and estradiol (E2) can modulate the magnitude of the Ang-(1-7) vasodilatory response in female rats. However, there are few studies addressing the influence of sex on the age-related vasodilatory effect of Ang-(1-7). Here, we evaluated the vasodilatory response to Ang-(1-7) on vascular ageing. Ang-(1-7) dose-response curves were determined in mice aortic rings from males (old and young) and females (E2 treated/non-treated old and young) mounted in an isolated organ chamber. Abdominal aortic rings were used for protein expression analysis and determination of reactive oxygen species (ROS) and nitric oxide (NO) production. Our results showed that the Ang-(1-7) vasodilatory effect was absent in aorta from old females, contrasting with a full response in vessels from young females. The Ang-(1-7) vasodilatory effect was restored by E2 replacement in old females. A robust increase in Mas receptor, SOD2, NRF-2 and NOX2 expression was observed in aorta from old females, which was normalized by E2. This effect of E2 was also associated with lower production of ROS and normal levels of NO. In conclusion, our data demonstrated that pathways involved in the Ang-(1-7) vasodilatory response in female mice is affected by hormonal changes in ageing and rescued by E2.


Asunto(s)
Envejecimiento/metabolismo , Angiotensina I/farmacología , Vasos Sanguíneos/metabolismo , Fragmentos de Péptidos/farmacología , Animales , Aorta/metabolismo , Vasos Sanguíneos/patología , Estradiol/farmacología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Superóxidos/metabolismo , Vasodilatación/efectos de los fármacos
15.
Melanoma Res ; 27(6): 536-544, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28877050

RESUMEN

Cutaneous melanoma is one of the most lethal cancers because of its increased rate of metastasis and resistance to available therapeutic options. Early studies indicate that metformin has beneficial effects on some types of cancer, including melanoma. To clarify knowledge of the mechanism of action of metformin on this disease, two treatment-based approaches are presented using metformin on melanoma progression: an in-vitro and an in-vivo model. The in-vitro assay was performed for two experimental treatment periods (24 and 48 h) at different metformin concentrations. The results showed that metformin decreased cell viability, reduced proliferation, and apoptosis was a major event 48 h after treating B16F10 cells. Oxidative stress was characterized by the decrease in total thiol antioxidants immediately following 24 h of metformin treatment and showed an increase in lipid peroxidation. The in-vivo model was performed by injecting B16F10 cells into the subcutaneous of C57/BL6 mice. Treatment with metformin began on day 3 and on day 14, the mice were killed. Treatment of mice with metformin reduced tumor growth by 54% of its original volume compared with nontreatment. The decrease in systemic vascular endothelial growth factor, restoration of antioxidants glutathione and catalase, and normal levels of lipid peroxidation indicate an improved outcome for melanoma following metformin treatment, meeting a need for new strategies in the treatment of melanoma.


Asunto(s)
Hipoglucemiantes/uso terapéutico , Melanoma Experimental/tratamiento farmacológico , Metformina/uso terapéutico , Animales , Proliferación Celular/efectos de los fármacos , Humanos , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Melanoma Experimental/patología , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL
16.
J Dermatol Sci ; 100(2): 152-155, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33051086
17.
Cancer Lett ; 361(2): 226-32, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25772650

RESUMEN

This study highlights the systemic oxidative changes in patients submitted to primary cutaneous melanoma removal. Cutaneous melanoma is highly aggressive and its incidence is increasing worldwide. We evaluated systemic oxidative stress (OS) and 3-nitrotyrosine (3-NT) expression in melanoma tissue in relation to the Breslow thickness in patients under surveillance. Forty-three patients with cutaneous melanoma and 50 healthy volunteers were recruited. Patients were divided into two groups according to the tumor's Breslow thickness: T1/T2 (<2 mm) and T3/T4 (≥2 mm). Systemic OS and inflammatory mediators were evaluated in plasma, and the 3-NT expression was analyzed via immunohistochemistry. Compared with the controls, the patients had lower blood levels of reduced glutathione, higher malondialdehyde and thiol levels, and a higher total radical-trapping antioxidant parameter to uric acid ratio. The C-reactive protein and γ-glutamyl transpeptidase were increased only in the T3/T4 group. High levels of 3-NT were present only in T3/T4 patients. Our data suggested that a correlation exists between the Breslow thickness and a systemic pro-oxidant status, and that oxidative changes induced by the melanoma remain in the microenvironment post-surgery, demonstrating a role for oxygen species in melanoma.


Asunto(s)
Melanoma/metabolismo , Melanoma/cirugía , Estrés Oxidativo/fisiología , Microambiente Tumoral , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias Cutáneas , Tirosina/análogos & derivados , Tirosina/metabolismo , Adulto Joven , Melanoma Cutáneo Maligno
18.
Food Chem Toxicol ; 74: 270-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25455894

RESUMEN

Rosmarinic acid (RosmA) demonstrates antioxidant and anti-inflammatory properties. We investigated the effect of RosmA on liver ischemia/reperfusion injury. Rats were submitted to 60 min of ischemia plus saline or RosmA treatment (150 mg/kg BW intraperitoneally) followed by 6 h of reperfusion. Hepatocellular injury was evaluated according to aminotransferase activity and histological damage. Hepatic neutrophil accumulation was also evaluated. Oxidative/nitrosative stress was estimated by measuring the reduced glutathione, lipid hydroperoxide and nitrotyrosine levels. Endothelial and inducible nitric oxide synthase (eNOS/iNOS) and nitric oxide (NO) were assessed with immunoblotting and chemiluminescence assays. Hepatic tumor necrosis factor-alpha (TNF-α) and interleukin-1beta mRNA were assessed using real-time PCR, and nuclear factor-kappaB (NF-κB) activation was estimated by immunostaining. RosmA treatment reduced hepatocellular damage, neutrophil infiltration and all oxidative/nitrosative stress parameters. RosmA decreased the liver content of eNOS/iNOS and NO, attenuated NF-κB activation, and down-regulated TNF-α and interleukin-1beta gene expression. These data indicate that RosmA exerts anti-inflammatory and antioxidant effects in the ischemic liver, thereby protecting hepatocytes against ischemia/reperfusion injury. The mechanisms underlying these effects may be related to the inhibitory potential of RosmA on the NF-κB signaling pathway and the reduction of iNOS and eNOS expressions and NO levels, in addition to its natural antioxidant capability.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Cinamatos/uso terapéutico , Depsidos/uso terapéutico , Hepatopatías/tratamiento farmacológico , Daño por Reperfusión/tratamiento farmacológico , Animales , Glutatión/metabolismo , Interleucina-1beta/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hepatopatías/patología , Pruebas de Función Hepática , Masculino , Infiltración Neutrófila , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/análisis , Peroxidasa/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/patología , Factor de Necrosis Tumoral alfa/metabolismo , Ácido Rosmarínico
19.
Free Radic Res ; 46(7): 872-82, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22512358

RESUMEN

Nitric oxide (NO) is produced by various mammalian cells and plays a variety of regulatory roles in normal physiology and in pathological processes. This article provides evidence regarding the participation of NO in UVB-induced skin lesions and in the modulation of skin cell proliferation following UVB skin irradiation. Hairless mice were subjected to UVB irradiation for 3 hours and the skin evaluated immediately, 6 and 24 hours postirradiation. The skin lipid peroxidation, and NO levels evaluated by chemiluminescence and inducible nitric oxide synthase (iNOS) and nitrotyrosine immunolabelling increased significantly 24 hours after irradiation and decreased under the treatment with aminoguanidine (AG). On the other hand, cell proliferation markers, PCNA and VEGF showed a strong labelling index when AG was used. The data indicate that NO mediates, at least in part, the lipid peroxidation and protein nitration and also promotes the down regulation of factors involved in cell proliferation. This work shows that the NO plays an important role in the oxidative stress damage and on modulation of cell proliferation pathways in UVB irradiated skin.


Asunto(s)
Óxido Nítrico/biosíntesis , Traumatismos Experimentales por Radiación/metabolismo , Piel/efectos de la radiación , Animales , Biomarcadores/metabolismo , Proliferación Celular/efectos de la radiación , Inhibidores Enzimáticos/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Guanidinas/farmacología , Peroxidación de Lípido/efectos de los fármacos , Peroxidación de Lípido/efectos de la radiación , Masculino , Ratones , Ratones Pelados , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/patología , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología , Tirosina/análogos & derivados , Tirosina/análisis , Tirosina/inmunología , Rayos Ultravioleta/efectos adversos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA