Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 108(9): 1725-1734, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34433009

RESUMEN

Copy-number variations (CNVs) are a common cause of congenital limb malformations and are interpreted primarily on the basis of their effect on gene dosage. However, recent studies show that CNVs also influence the 3D genome chromatin organization. The functional interpretation of whether a phenotype is the result of gene dosage or a regulatory position effect remains challenging. Here, we report on two unrelated families with individuals affected by bilateral hypoplasia of the femoral bones, both harboring de novo duplications on chromosome 10q24.32. The ∼0.5 Mb duplications include FGF8, a key regulator of limb development and several limb enhancer elements. To functionally characterize these variants, we analyzed the local chromatin architecture in the affected individuals' cells and re-engineered the duplications in mice by using CRISPR-Cas9 genome editing. We found that the duplications were associated with ectopic chromatin contacts and increased FGF8 expression. Transgenic mice carrying the heterozygous tandem duplication including Fgf8 exhibited proximal shortening of the limbs, resembling the human phenotype. To evaluate whether the phenotype was a result of gene dosage, we generated another transgenic mice line, carrying the duplication on one allele and a concurrent Fgf8 deletion on the other allele, as a control. Surprisingly, the same malformations were observed. Capture Hi-C experiments revealed ectopic interaction with the duplicated region and Fgf8, indicating a position effect. In summary, we show that duplications at the FGF8 locus are associated with femoral hypoplasia and that the phenotype is most likely the result of position effects altering FGF8 expression rather than gene dosage effects.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 10/química , Variaciones en el Número de Copia de ADN , Factor 8 de Crecimiento de Fibroblastos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Adolescente , Alelos , Animales , Sistemas CRISPR-Cas , Preescolar , Cromatina/química , Cromatina/metabolismo , Cromosomas Humanos Par 10/metabolismo , Elementos de Facilitación Genéticos , Familia , Femenino , Fémur/anomalías , Fémur/diagnóstico por imagen , Fémur/metabolismo , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Edición Génica , Heterocigoto , Humanos , Lactante , Deformidades Congénitas de las Extremidades Inferiores/diagnóstico por imagen , Deformidades Congénitas de las Extremidades Inferiores/metabolismo , Deformidades Congénitas de las Extremidades Inferiores/patología , Masculino , Ratones , Ratones Transgénicos , Linaje , Fenotipo
2.
Mol Genet Genomics ; 297(5): 1343-1352, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35821352

RESUMEN

Herein, we report on a large Polish family presenting with a classical triphalangeal thumb-polysyndactyly syndrome (TPT-PS). This rare congenital limb anomaly is generally caused by microduplications encompassing the Sonic Hedgehog (SHH) limb enhancer, termed the zone of polarizing activity (ZPA) regulatory sequence (ZRS). Recently, a pathogenic variant in the pre-ZRS (pZRS), a conserved sequence located near the ZRS, has been described in a TPT-PS Dutch family. We performed targeted ZRS sequencing, array comparative genomic hybridization, and whole-exome sequencing. Next, we sequenced the recently described pZRS region. Finally, we performed a circular chromatin conformation capture-sequencing (4C-seq) assay on skin fibroblasts of one affected family member and control samples to examine potential alterations in the SHH regulatory domain and functionally characterize the identified variant. We found that all affected individuals shared a recently identified pathogenic point mutation in the pZRS region: NC_000007.14:g.156792782C>G (GRCh38/hg38), which is the same as in the Dutch family. The results of 4C-seq experiments revealed increased interactions within the whole SHH regulatory domain (SHH-LMBR1 TAD) in the patient compared to controls. Our study expands the number of TPT-PS families carrying a pathogenic alteration of the pZRS and underlines the importance of routine pZRS sequencing in the genetic diagnostics of patients with TPT-PS or similar phenotypes. The pathogenic mutation causative for TPT-PS in our patient gave rise to increased interactions within the SHH regulatory domain in yet unknown mechanism.


Asunto(s)
Anomalías Congénitas , Proteínas Hedgehog , Disostosis Mandibulofacial , Polidactilia , Hibridación Genómica Comparativa , Anomalías Congénitas/genética , Elementos de Facilitación Genéticos , Proteínas Hedgehog/genética , Humanos , Disostosis Mandibulofacial/genética , Mutación , Linaje , Pulgar
3.
Am J Med Genet A ; 188(2): 642-647, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34773354

RESUMEN

Aniridia is usually an autosomal dominant, rare disorder characterized by a variable degree of hypoplasia or the absence of iris tissue, with additional ocular abnormalities. Pathogenic variants in the PAX6 gene are associated with aniridia in most patients. However, in up to 30% of individuals, disease results from 11p13 chromosomal rearrangements. Here we present a patient with a clinical diagnosis of partial aniridia born to consanguineous Polish parents. The parents were asymptomatic and ophthalmologically normal. We performed PAX6 sequencing, array comparative genomic hybridization, quantitative real-time PCR, and whole genome sequencing. aCGH revealed a homozygous deletion of the DCDC1 gene fragment in the patient. The same, but heterozygous deletion, was detected in each of the patient's asymptomatic parents and brother. In the presented family, the signs and symptoms of aniridia are observed only in the homozygous proband. Whole genome sequencing analysis was performed to determine other possible causes of the disease and did not detect any additional or alternative potentially pathogenic variant. We report a novel homozygous deletion located in the 11p13 region, which does not include the PAX6 gene or any known PAX6 enhancers. To our best knowledge, this is the first reported case of a patient presented with isolated aniridia carrying a homozygous microdeletion downstream of the PAX6 gene.


Asunto(s)
Aniridia , Proteínas del Ojo , Aniridia/diagnóstico , Aniridia/genética , Hibridación Genómica Comparativa , Proteínas del Ojo/genética , Proteínas de Homeodominio/genética , Homocigoto , Humanos , Masculino , Factor de Transcripción PAX6/genética , Linaje , Eliminación de Secuencia
4.
Clin Genet ; 96(5): 429-438, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31347140

RESUMEN

RUNX2 (Runt-related transcription factor 2) is a master regulator of osteoblast differentiation, cartilage and bone development. Pathogenic variants in RUNX2 have been linked to the Cleidocranial dysplasia (CCD), which is characterized by hypoplasia or aplasia of clavicles, delayed fontanelle closure, and dental anomalies. Here, we report 11 unrelated Polish patients with CCD caused by pathogenic alterations located in the Runt domain of RUNX2. In total, we identified eight different intragenic variants, including seven missense and one splicing mutation. Three of them are novel: c.407T>A p.(Leu136Gln), c.480C>G p.(Asn160Lys), c.659C>G p.(Thr220Arg), additional three were not functionally tested: c.391C>T p.(Arg131Cys), c.580+1G>T p.(Lys195_Arg229del), c.652A>G p.(Lys218Glu), and the remaining two: c.568C>T p.(Arg190Trp), c.673C>T p.(Arg225Trp) were previously reported and characterized. The performed transactivation and localization studies provide evidence of decreased transcriptional activity of RUNX2 due to mutations targeting the Runt domain and prove that impairment of nuclear localization signal (NLS) affects the subcellular localization of the protein. Presented data show that pathogenic variants discovered in our patients have a detrimental effect on RUNX2, triggering the CCD phenotype.


Asunto(s)
Displasia Cleidocraneal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/química , Predisposición Genética a la Enfermedad , Conformación Proteica , Preescolar , Displasia Cleidocraneal/epidemiología , Displasia Cleidocraneal/patología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/ultraestructura , Femenino , Humanos , Lactante , Masculino , Mutación/genética , Mutación Missense/genética , Fenotipo , Polonia/epidemiología , Isoformas de Proteínas/genética , Relación Estructura-Actividad
5.
Am J Med Genet A ; 179(12): 2447-2453, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31512363

RESUMEN

Hartsfield syndrome is a rare clinical entity characterized by holoprosencephaly and ectrodactyly with the variable feature of cleft lip/palate. In addition to these symptoms patients with Hartsfield syndrome can show developmental delay of variable severity, isolated hypogonadotropic hypogonadism, central diabetes insipidus, vertebral anomalies, eye anomalies, and cardiac malformations. Pathogenic variants in FGFR1 have been described to cause phenotypically different FGFR1-related disorders such as Hartsfield syndrome, hypogonadotropic hypogonadism with or without anosmia, Jackson-Weiss syndrome, osteoglophonic dysplasia, Pfeiffer syndrome, and trigonocephaly Type 1. Here, we report three patients with Hartsfield syndrome from two unrelated families. Exome sequencing revealed two siblings harboring a novel de novo heterozygous synonymous variant c.1029G>A, p.Ala343Ala causing a cryptic splice donor site in exon 8 of FGFR1 likely due to gonadal mosaicism in one parent. The third case was a sporadic patient with a novel de novo heterozygous missense variant c.1868A>G, p.(Asp623Gly).


Asunto(s)
Labio Leporino/diagnóstico , Labio Leporino/genética , Fisura del Paladar/diagnóstico , Fisura del Paladar/genética , Dedos/anomalías , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Deformidades Congénitas de la Mano/diagnóstico , Deformidades Congénitas de la Mano/genética , Holoprosencefalia/diagnóstico , Holoprosencefalia/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Mutación Missense , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Mutación Silenciosa , Análisis Mutacional de ADN , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Linaje , Fenotipo
6.
Genet Med ; 20(6): 599-607, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29236091

RESUMEN

PurposeCopy-number variants (CNVs) are generally interpreted by linking the effects of gene dosage with phenotypes. The clinical interpretation of noncoding CNVs remains challenging. We investigated the percentage of disease-associated CNVs in patients with congenital limb malformations that affect noncoding cis-regulatory sequences versus genes sensitive to gene dosage effects.MethodsWe applied high-resolution copy-number analysis to 340 unrelated individuals with isolated limb malformation. To investigate novel candidate CNVs, we re-engineered human CNVs in mice using clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing.ResultsOf the individuals studied, 10% harbored CNVs segregating with the phenotype in the affected families. We identified 31 CNVs previously associated with congenital limb malformations and four novel candidate CNVs. Most of the disease-associated CNVs (57%) affected the noncoding cis-regulatory genome, while only 43% included a known disease gene and were likely to result from gene dosage effects. In transgenic mice harboring four novel candidate CNVs, we observed altered gene expression in all cases, indicating that the CNVs had a regulatory effect either by changing the enhancer dosage or altering the topological associating domain architecture of the genome.ConclusionOur findings suggest that CNVs affecting noncoding regulatory elements are a major cause of congenital limb malformations.


Asunto(s)
ADN Intergénico/genética , Deformidades Congénitas de las Extremidades/genética , Animales , Variaciones en el Número de Copia de ADN/genética , Femenino , Dosificación de Gen/genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Ratones , Ratones Transgénicos , Linaje , Fenotipo
7.
J Hum Genet ; 61(7): 577-83, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27030147

RESUMEN

Desbuquois dysplasia type 2 (DBQD2) is a rare recessively inherited skeletal genetic disorder characterized by severe prenatal and postnatal growth retardation, generalized joint laxity with dislocation of large joints and facial dysmorphism. The condition was recently described to result from autosomal recessive mutations in XYLT1, encoding the enzyme xylosyltransferase-1. In this paper, we report on a Polish patient with DBQD2 who presented with severe short stature of prenatal onset, joint laxity, psychomotor retardation and multiple radiological abnormalities including short metacarpals, advanced bone age and exaggerated trochanters. Endocrinological examinations revealed that sleep-induced growth hormone (GH) release and GH peak in clonidine- and glucagon-induced provocative tests as well as insulin-like growth factor 1 (IGF-1) and IGF-binding protein-3 levels were all markedly decreased, confirming deficiency of GH secretion. Bone age, unlikely to GH deficiency, was significantly advanced. To establish the diagnosis at a molecular level, we performed whole-exome sequencing and bioinformatic analysis in the index patient, which revealed compound heterozygous XYLT1 mutations: c.595C>T(p.Gln199*) and c.1651C>T(p.Arg551Cys), both of which are novel. Sanger sequencing showed that the former mutation was inherited from the healthy mother, whereas the latter one most probably occurred de novo. Our study describes the first case of DBQD2 resulting from compound heterozygous XYLT1 mutation, expands the mutational spectrum of the disease and provides evidence that the severe growth retardation and microsomia observed in DBQD2 patients may result not only from the skeletal dysplasia itself but also from GH and IGF-1 deficiency.


Asunto(s)
Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Enanismo Hipofisario/diagnóstico , Enanismo Hipofisario/genética , Enanismo/diagnóstico , Enanismo/genética , Heterocigoto , Inestabilidad de la Articulación/diagnóstico , Inestabilidad de la Articulación/genética , Mutación , Osificación Heterotópica/diagnóstico , Osificación Heterotópica/genética , Pentosiltransferasa/genética , Fenotipo , Polidactilia/diagnóstico , Polidactilia/genética , Adulto , Análisis Mutacional de ADN , Exoma , Femenino , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Repeticiones de Microsatélite , Polonia , Embarazo , Diagnóstico Prenatal , Esqueleto/diagnóstico por imagen , Esqueleto/patología , UDP Xilosa Proteína Xilosiltransferasa
8.
J Hum Genet ; 61(5): 457-61, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26763883

RESUMEN

Brachydactyly refers to shortening of digits due to hypoplasia or aplasia of bones forming the hands and/or feet. Isolated brachydactyly type E (BDE), which is characterized by shortened metacarpals and/or metatarsals, results in a small proportion of patients from HOXD13 or PTHLH mutations, although in the majority of cases molecular lesion remains unknown. BDE, like other brachydactylies, shows clinical heterogeneity with highly variable intrafamilial and interindividual expressivity. In this study, we investigated two Polish cases (one familial and one sporadic) presenting with BDE and additional symptoms due to novel PTHLH mutations. Apart from BDE, the affected family showed short stature, mild craniofacial dysmorphism and delayed bone age. Sanger sequencing of PTHLH revealed a novel heterozygous frameshift mutation c.258delC(p.N87Tfs*18) in two affected individuals and one relative manifesting mild brachydactyly. The sporadic patient, in addition to BDE, presented with craniofacial dysmorphism, normal stature and bone age, and was demonstrated to carry a de novo heterozygous c.166C>T(p.R56*) mutation. Our paper reports on the two novel truncating PTHLH variants, resulting in variable combination of BDE and other symptoms. Data shown here expand the knowledge on the phenotypic presentation of PTHLH mutations, highlighting significant clinical variability and incomplete penetrance of the PTHLH-related symptoms.


Asunto(s)
Braquidactilia/genética , Anomalías Craneofaciales/genética , Enanismo/genética , Heterocigoto , Mutación , Proteína Relacionada con la Hormona Paratiroidea/genética , Fenotipo , Adolescente , Huesos/diagnóstico por imagen , Huesos/patología , Braquidactilia/diagnóstico , Niño , Preescolar , Anomalías Craneofaciales/diagnóstico , Análisis Mutacional de ADN , Enanismo/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , Síndrome
9.
Ginekol Pol ; 87(10): 706-710, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27958623

RESUMEN

OBJECTIVES: Holt-Oram syndrome manifests with defects of upper limbs, pectoral girdle and cardiovascular system. The aim of this paper was to present complex clinical picture of the syndrome and its variable expression on the example of the family diagnosed genetically on the neonatal ward, after proband's prenatal examination. MARETIAL AND METHODS: Nine family members were tested for TBX5 gene mutation. RESULTS: Four of family members were diagnosed with Holt-Oram syndrome and five had correct genetic test results. The diagnosis allowed to identify a genetic risk family and enabled to provide them with genetic counselling. CONCLUSIONS: Diagnosis of Holt-Oram syndrome is possible as early as in prenatal period and it can be verified by genetic tests.


Asunto(s)
Anomalías Múltiples/genética , Cardiopatías Congénitas/genética , Defectos del Tabique Interatrial/diagnóstico , Defectos del Tabique Interatrial/genética , Deformidades Congénitas de las Extremidades Inferiores/diagnóstico , Deformidades Congénitas de las Extremidades Inferiores/genética , Mutación , Diagnóstico Prenatal , Proteínas de Dominio T Box/genética , Deformidades Congénitas de las Extremidades Superiores/diagnóstico , Deformidades Congénitas de las Extremidades Superiores/genética , Anomalías Múltiples/sangre , Anomalías Múltiples/diagnóstico , Biomarcadores/sangre , Femenino , Asesoramiento Genético , Pruebas Genéticas , Cardiopatías Congénitas/sangre , Cardiopatías Congénitas/diagnóstico , Defectos del Tabique Interatrial/sangre , Humanos , Recién Nacido , Deformidades Congénitas de las Extremidades Inferiores/sangre , Linaje , Polimorfismo Genético , Embarazo , Proteínas de Dominio T Box/sangre , Deformidades Congénitas de las Extremidades Superiores/sangre
10.
Birth Defects Res A Clin Mol Teratol ; 100(10): 764-71, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25196357

RESUMEN

BACKGROUND: Split-hand/foot malformation (SHFM) is a clinically and genetically heterogeneous limb abnormality characterized by the absence or hypoplasia of the central rays of the autopod. SHFM1, which is one out of seven known SHFM loci, maps to 7q21.2-q21.3. SHFM1 is usually inherited as an autosomal dominant trait with reduced penetrance, although recessive inheritance has been described for a single family carrying a homozygous DLX5 missense variant. In most cases, SHFM1 results from heterozygous deletions encompassing DLX5/DLX6 genes or from inversions and translocations separating the genes from their limb specific enhancers. Recently, a single Chinese family with dominant SHFM1 was shown to result from a heterozygous DLX5 missense mutation. METHODS: In this study, we report on four male individuals from two unrelated Polish families (one sporadic and one familial case) presenting with isolated SHFM. We tested both probands for known molecular causes of SHFM, including TP63, WNT10B, DLX5 mutations and copy number changes using 1.4 M array CGH. RESULTS: Sanger sequencing of DLX5 revealed a novel heterozygous nonsense mutation c.G115T(p.E39X) in both index patients. Segregation studies demonstrated that the variant was present in all affected family members but also in three apparently healthy relatives (two females and one male). CONCLUSION: This is the first report of a heterozygous DLX5 nonsense mutation resulting in incompletely penetrant autosomal dominant isolated SHFM1. Data shown here provides further evidence for the contribution of DLX5 point mutations to the development of ectrodactyly and suggest the possibility of sex-related segregation distortion with an excess of affected males.


Asunto(s)
Proteínas de Homeodominio/genética , Deformidades Congénitas de las Extremidades/genética , Mutación Missense/genética , Factores de Transcripción/genética , Secuencia de Bases , Hibridación Genómica Comparativa , Genes Dominantes , Heterocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Polonia , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
11.
Front Mol Biosci ; 10: 1250714, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37916192

RESUMEN

Background: Split-hand/foot malformation type 1 (SHFM1) refers to the group of rare congenital limb disorders defined by the absence or hypoplasia of the central rays of the autopods with or without accompanying anomalies, such as hearing loss, craniofacial malformation, and ectodermal dysplasia. Consequently, the condition is characterized by clinical variability that hinders diagnostic and counseling procedures. SHFM1 is caused by pathogenic variants affecting the DLX5/6 genes and/or their tissue-specific enhancers at the 7q21.3 locus. Herein, we report on seven patients from five unrelated Polish families affected by variable symptoms of the SHFM1 spectrum, all harboring 7q21.3 or 7q21.2-q21.3 rearrangements, and provide a genotype-phenotype correlation in the studied cohort. Methods: We applied GTG banding, array-based comparative genomic hybridization (aCGH), and whole-genome sequencing (WGS) in order to identify the causative aberrations in all affected patients. Results: The identified pathogenic structural variants included deletions and/or translocations involving the 7q21.3 locus, i.e., t(7;10)(q21.3;q22.2) and t(7;12)(q21.3;q21.2) in all affected individuals. Interestingly, a sporadic carrier of the latter aberration presented the SHFM1 phenotype with additional features overlapping with Baker-Gordon syndrome (BAGOS), which resulted from the translocation breakpoint at chromosome 12 within the SYT1 gene. Conclusion: Clinical variability of the studied cohort reflects the composition of the DLX5/6 regulatory elements that were dislocated from their target genes by chromosomal rearrangements. The correlation of our data with the previously published observations enabled us to update the phenotypic subregions and regulatory units within the SHFM1 locus. In addition, we present the first case of SHFM1 and BAGOS-like phenotype that resulted from translocation breakpoints at chromosomes 7 and 12, both of which were pathogenic, and consequently, we show the first evidence that BAGOS can also result from the regulatory loss-of-function SYT1 mutations. In this paper, we emphasize the utility of sequence-based approaches in molecular diagnostics of disorders caused by regulatory structural variants.

12.
J Appl Genet ; 64(1): 89-104, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36369640

RESUMEN

Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophies and the most frequent cause of congenital blindness in children. To date, 25 genes have been implicated in the pathogenesis of this rare disorder. Performing an accurate molecular diagnosis is crucial as gene therapy is becoming available. This study aimed to report the molecular basis of Leber congenital amaurosis, especially novel and rare variants in 27 Polish families with a clinical diagnosis of LCA fully confirmed by molecular analyses. Whole exome sequencing or targeted next-generation sequencing (NGS) of inherited retinal dystrophies-associated (IRD) genes was applied to identify potentially pathogenic variants. Bidirectional Sanger sequencing and quantitative PCR (qPCR) were carried out for validation and segregation analysis of the variants identified within the families. We identified 28 potentially pathogenic variants, including 11 novel, in 8 LCA genes: CEP290, CRB1, GUCY2D, NMNAT1, RPGRIP1, CRX, LRAT1, and LCA5. This study expands the mutational spectrum of the LCA genes. Moreover, these results, together with the conclusions from our previous studies, allow us to point to the most frequently mutated genes and variants in the Polish cohort of LCA patients.


Asunto(s)
Amaurosis Congénita de Leber , Nicotinamida-Nucleótido Adenililtransferasa , Distrofias Retinianas , Niño , Humanos , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/diagnóstico , Polonia , Análisis Mutacional de ADN , Mutación , Secuenciación de Nucleótidos de Alto Rendimiento , Linaje , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Nicotinamida-Nucleótido Adenililtransferasa/genética , Antígenos de Neoplasias/genética
13.
Orphanet J Rare Dis ; 17(1): 325, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36028842

RESUMEN

BACKGROUND: Split-hand/ foot malformation with long bone deficiency 3 (SHFLD3) is an extremely rare condition associated with duplications located on 17p13.3, which invariably encompasses the BHLHA9 gene. The disease inherits with variable expressivity and significant incomplete penetrance as high as 50%. RESULTS: We have detected 17p13.3 locus one-allele triplication in a male proband from family 1 (F1.1), and duplication in a male proband from family 2 (F2.1) applying array comparative genomic hybridization (array CGH). The rearrangements mapped to the following chromosomal regions-arr[GRCh38] 17p13.3(960254-1291856)×4 in F1.1 and arr[GRCh38] 17p13.3(1227482-1302716)×3 in F2.1. The targeted quantitative PCR revealed that the 17p13.3 locus was also duplicated in the second affected member from family 2 (F2.2; brother of F2.1). In the next step, we performed segregation studies using quantitative PCR and revealed that F1.1 inherited the triplication from his healthy father-F1.2, whereas the locus was unremarkable in the mother of F2.1 & F2.2 and the healthy son of F2.1. However, the duplication was present in a healthy daughter of F2.2, an asymptomatic carrier. The breakpoint analysis allowed to define the exact size and span of the duplicated region in Family 2, i.e., 78,948 bp chr17:1225063-1304010 (HG38). Interestingly, all symptomatic carriers from both families presented with variable SHFLD3 phenotype. The involvement of secondary modifying locus could not be excluded, however, the Sanger sequencing screening of BHLHA9 entire coding sequence was unremarkable for both families. CONCLUSIONS: We have shed light on the one-allele CNV triplication occurrence that should be considered when a higher probe (over duplication range) signal is noted. Second, all SHFLD3 patients were accurately described regarding infrequent limb phenotypes, which were highly variable even when familial. Of note, all symptomatic individuals were males. SHFLD3 still remains a mysterious ultra-rare disease and our findings do not answer crucial questions regarding the disease low penetrance, variable expression and heterogeneity. However, we have presented some clinical and molecular aspects that may be helpful in daily diagnostic routine, both dysmorphological and molecular assessment, of patients affected with SHFLD3.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Deformidades Congénitas de las Extremidades , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Hibridación Genómica Comparativa , Femenino , Duplicación de Gen , Humanos , Deformidades Congénitas de las Extremidades/genética , Masculino , Fenotipo
14.
Front Pediatr ; 10: 990111, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313893

RESUMEN

Cardio-facio-cutaneous syndrome (CFCS) belongs to the group of RASopathies, clinical disorders defined by disruptions in the RAS/MAPK signaling pathway. It is caused by heterozygous gain-of-function germline mutations in genes encoding protein kinases: BRAF, MAP2K1 (MEK1), MAP2K2 (MEK2), and in the GTPase-encoding gene KRAS. CFCS is characterized by craniofacial dysmorphic features, congenital heart defects, severe malnutrition, proportionate short stature, anomalies within the structure of skin and hair, and psychomotor disability. The pathophysiology of growth impairment is multifactorial with feeding difficulties, growth hormone deficiency, and insensitivity. Immunodeficiency has not been hitherto reported as an integral part of CFCS yet an increased activation of the RAS/MAPK signaling pathway may contribute to explaining the causal relationship between RASopathy and the dysfunctions within the B and T lymph cell compartments resulting in a deficiency in T cell costimulation and B cell maturation with impaired class switch recombination, somatic hypermutation, and high-affinity antibody production. We report on a boy born prematurely at 32 WGA, with the perinatal period complicated by pneumonia, respiratory distress syndrome, and valvular pulmonary stenosis. The boy suffered from recurrent pneumonia, obstructive bronchitis, sepsis, urinary tract infection, and recurrent fevers. He presented with severe hypotrophy, psychomotor disability, short stature, craniofacial dysmorphism, dental hypoplasia, sparse hair, and cryptorchidism. Whole genome sequencing showed a novel heterozygous pathogenic germline missense variant: c.364A > G; p.Asn122Asp in the MAP2K1 gene, supporting the diagnosis of CFCS. The immunological workup revealed hypogammaglobulinemia, IgG subclass, and specific antibody deficiency accompanied by decreased numbers of T helper cells and naive and memory B cells. Replacement immunoglobulin therapy with timely antibiotic prophylaxis were instituted. At the age of six years, growth hormone deficiency was diagnosed and the rGH therapy was started. The ever-increasing progress in genetic studies contributes to establishing the definitive CFCS diagnosis and sheds the light on the interrelated genotype-phenotype heterogeneity of RASopathies. Herein, we add new phenotypic features of predominating humoral immunodeficiency to the symptomatology of CFCS with a novel mutation in MAP2K1. While CFCS is a multifaceted disease, increased pediatricians' awareness is needed to prevent the delay in diagnostics and therapeutic interventions.

15.
Front Mol Biosci ; 9: 865494, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591945

RESUMEN

Background: Craniosynostosis (CS) represents a highly heterogeneous genetic condition whose genetic background has not been yet revealed. The abnormality occurs either in isolated form or syndromic, as an element of hundreds of different inborn syndromes. Consequently, CS may often represent a challenging diagnostic issue. Methods: We investigated a three-tiered approach (karyotyping, Sanger sequencing, followed by custom gene panel/chromosomal microarray analysis, and exome sequencing), coupled with prioritization of variants based on dysmorphological assessment and description in terms of human phenotype ontology. In addition, we have also performed a statistical analysis of the obtained clinical data using the nonparametric test χ2. Results: We achieved a 43% diagnostic success rate and have demonstrated the complexity of mutations' type harbored by the patients, which were either chromosomal aberrations, copy number variations, or point mutations. The majority of pathogenic variants were found in the well-known CS genes, however, variants found in genes associated with chromatinopathies or RASopathies are of particular interest. Conclusion: We have critically summarized and then optimised a cost-effective diagnostic algorithm, which may be helpful in a daily diagnostic routine and future clinical research of various CS types. Moreover, we have pinpointed the possible underestimated co-occurrence of CS and intellectual disability, suggesting it may be overlooked when intellectual disability constitutes a primary clinical complaint. On the other hand, in any case of already detected syndromic CS and intellectual disability, the possible occurrence of clinical features suggestive for chromatinopathies or RASopathies should also be considered.

16.
Front Genet ; 13: 931822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873489

RESUMEN

Ciliopathies are rare congenital disorders, caused by defects in the cilium, that cover a broad clinical spectrum. A subgroup of ciliopathies showing significant phenotypic overlap are known as skeletal ciliopathies and include Jeune asphyxiating thoracic dysplasia (JATD), Mainzer-Saldino syndrome (MZSDS), cranioectodermal dysplasia (CED), and short-rib polydactyly (SRP). Ciliopathies are heterogeneous disorders with >187 associated genes, of which some genes are described to cause more than one ciliopathy phenotype. Both the clinical and molecular overlap make accurate diagnosing of these disorders challenging. We describe two unrelated Polish patients presenting with a skeletal ciliopathy who share the same compound heterozygous variants in IFT140 (NM_014,714.4) r.2765_2768del; p.(Tyr923Leufs*28) and exon 27-30 duplication; p.(Tyr1152_Thr1394dup). Apart from overlapping clinical symptoms the patients also show phenotypic differences; patient 1 showed more resemblance to a Mainzer-Saldino syndrome (MZSDS) phenotype, while patient 2 was more similar to the phenotype of cranioectodermal dysplasia (CED). In addition, functional testing in patient-derived fibroblasts revealed a distinct cilium phenotyps for each patient, and strikingly, the cilium phenotype of CED-like patient 2 resembled that of known CED patients. Besides two variants in IFT140, in depth exome analysis of ciliopathy associated genes revealed a likely-pathogenic heterozygous variant in INTU for patient 2 that possibly affects the same IFT-A complex to which IFT140 belongs and thereby could add to the phenotype of patient 2. Taken together, by combining genetic data, functional test results, and clinical findings we were able to accurately diagnose patient 1 with "IFT140-related ciliopathy with MZSDS-like features" and patient 2 with "IFT140-related ciliopathy with CED-like features". This study emphasizes that identical variants in one ciliopathy associated gene can lead to a variable ciliopathy phenotype and that an in depth and integrated analysis of clinical, molecular and functional data is necessary to accurately diagnose ciliopathy patients.

17.
J Appl Genet ; 62(1): 107-113, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33131036

RESUMEN

Auriculocondylar syndrome (ACS) is an ultra-rare disorder that arises from developmental defects of the first and second pharyngeal arches. Three subtypes of ACS have been described so far, i.e., ACS1 (MIM: 602483), ACS2 (MIM: 600810), and ACS3 (MIM: 131240). The majority of patients, however, are affected by ACS2, which results from the mutations in the PLCB4 gene. Herein, we have described an 8-year-old male patient presenting with ACS2 and summarized the molecular and phenotypic spectrum of the syndrome. We have also compared the clinical features of our case to three other previously described cases (one sporadic and two familial) harboring the same heterozygous missense variant c.1862G>A, p.Arg621His in the PLCB4 gene. The mutation was detected using whole-exome sequencing (WES). Due to low coverage of WES and suspicion of somatic mosaicism, the variant was additionally reassessed by deep targeted next-generation sequencing panel of genes related to the craniofacial disorders, and next confirmed by Sanger sequencing. ACS2 presents high intra- and interfamilial phenotypic heterogeneity that impedes reaching an exact clinical and molecular diagnosis. Thus, describing additional cases, carrying even the known mutation, but resulting in variable phenotypes, is essential for better understanding of such orphan Mendelian diseases.


Asunto(s)
Enfermedades del Oído/genética , Oído/anomalías , Niño , Humanos , Masculino , Mutación , Linaje , Fenotipo , Fosfolipasa C beta/genética
18.
Birth Defects Res ; 112(9): 652-659, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32286743

RESUMEN

The LRP4 gene encodes the highly conserved low-density lipoprotein receptor-related protein 4 (LRP4), which acts as a co-receptor for sclerostin. Sclerostin and LRP4 negatively regulate WNT/ß-catenin signaling pathway and lack of their inhibitory activity leads to constant osteoblastic differentiation. Consequently, increased bone formation occurs, which in the case of LRP4 mutations results in sclerosteosis type 2 (SOST2). Alterations within the LRP4 may also cause Cenani-Lenz syndactyly syndrome (CLSS), congenital myasthenia or isolated syndactyly. Here, we have reported a patient, in whom we found a novel homozygous splice-site variant c.1048+6T>C in LRP4 using whole exome sequencing. The patient was initially misdiagnosed with isolated CLSS-like or Malik-Percin-like syndactyly. However, we have finally refined the diagnosis after comprehensive radiological examination and molecularly confirmed SOST2. Additionally, we have pointed here to the splicing variants as important causative alterations that may be overlooked in the molecular analysis due to the lack of advanced, reliable algorithms, built-into the standard diagnostic pipelines. Using advanced in silico prediction tools of splice-site alterations, including Alamut Visual software, we have demonstrated that the c.1048+6T>C LRP4 variant affects the native donor site and impairs an SC35 enhancer activity. Based on our experience, we recommend comprehensive radiological imaging, including X-ray of the skull in each case of isolated syndactyly resulting from pathogenic variants of LRP4. We suggest that all previously reported patients carrying biallelic LRP4 mutations, who were diagnosed with isolated syndactyly, could actually present with SOST2 that had been unrecognized due to the incomplete clinical and radiological assessment.


Asunto(s)
Hiperostosis , Sindactilia , Humanos , Proteínas Relacionadas con Receptor de LDL/genética , Mutación/genética , Sindactilia/genética
19.
Front Genet ; 11: 593407, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193738

RESUMEN

BACKGROUND: Pyle disease is a rare autosomal recessive bone dysplasia characterized by the broadening of metaphyses with generalized cortical thinning. Homozygous truncating mutations in secreted frizzled-related protein 4 (SFRP4) were, to date, the only known variants causative for this type of skeletal disorder. SFRP4 controls cortical and trabecular bone remodeling by differential regulation of the canonical and non-canonical WNT signaling in both bone compartments. Loss-of-function mutations in the SFRP4 gene lead to the protein deficiency causing skeletal phenotype typical for Pyle disease. RESULTS: Herein, we report on the first SFRP4 missense mutations that occurred in compound heterozygosity in two siblings affected by Pyle disease, and which we have identified using a whole-genome sequencing approach followed by a comprehensive in silico pathogenicity assessment. The variants we have found were extremely rare and evaluated to be disease-causing by several online available tools and software. CONCLUSION: With this paper, we have shown that Pyle disease may be related not only to SFRP4 truncating mutations but also to other loss-of-function alterations that possibly impair the protein capacity to bind WNT ligands. As we have expanded here, the range of deleterious variants underlying Pyle disease, we contribute to the knowledge on the pathogenesis of this rare skeletal disorder.

20.
Sci Rep ; 10(1): 4159, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139749

RESUMEN

Obtaining reliable and high fidelity next-generation sequencing (NGS) data requires to choose a suitable sequencing platform and a library preparation approach, which both have their inherent assay-specific limitations. Here, we present the results of successful adaptation of SureSelect hybridisation-based target enrichment protocol for the sequencing on the Ion Torrent S5 platform, which is designed to work preferably with amplicon-based panels. In our study, we applied a custom NGS panel to screen a cohort of 16 unrelated patients affected by premature fusion of the cranial sutures, i.e. craniosynostosis (CS). CS occurs either as an isolated malformation or in a syndromic form, representing a genetically heterogeneous and clinically variable group of disorders. The approach presented here allowed us to achieve high quality NGS data and confirmed molecular diagnosis in 19% of cases, reaching the diagnostic yield similar to some of the published research reports. In conclusion, we demonstrated that an alternative enrichment strategy for library preparations can be successfully applied prior to sequencing on the Ion Torrent S5 platform. Also, we proved that the custom NGS panel designed by us represents a useful and effective tool in the molecular diagnostics of patients with CS.


Asunto(s)
Craneosinostosis/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Patología Molecular/métodos , Composición de Base/genética , Craneosinostosis/patología , Femenino , Humanos , Control de Calidad , RecQ Helicasas/genética , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA