Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 25(4): 270-289, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38086922

RESUMEN

The prevalence of obesity and associated chronic diseases continues to increase worldwide, negatively impacting on societies and economies. Whereas the association between excess body weight and increased risk for developing a multitude of diseases is well established, the initiating mechanisms by which weight gain impairs our metabolic health remain surprisingly contested. In order to better address the myriad of disease states associated with obesity, it is essential to understand adipose tissue dysfunction and develop strategies for reinforcing adipocyte health. In this Review we outline the diverse physiological functions and pathological roles of human white adipocytes, examining our current knowledge of why white adipocytes are vital for systemic metabolic control, yet poorly adapted to our current obesogenic environment.


Asunto(s)
Adipocitos Blancos , Obesidad , Humanos , Adipocitos Blancos/metabolismo , Adipocitos Blancos/patología , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología
3.
Nature ; 613(7943): 355-364, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599988

RESUMEN

DNA methylation is a fundamental epigenetic mark that governs gene expression and chromatin organization, thus providing a window into cellular identity and developmental processes1. Current datasets typically include only a fraction of methylation sites and are often based either on cell lines that underwent massive changes in culture or on tissues containing unspecified mixtures of cells2-5. Here we describe a human methylome atlas, based on deep whole-genome bisulfite sequencing, allowing fragment-level analysis across thousands of unique markers for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell type are more than 99.5% identical, demonstrating the robustness of cell identity programmes to environmental perturbation. Unsupervised clustering of the atlas recapitulates key elements of tissue ontogeny and identifies methylation patterns retained since embryonic development. Loci uniquely unmethylated in an individual cell type often reside in transcriptional enhancers and contain DNA binding sites for tissue-specific transcriptional regulators. Uniquely hypermethylated loci are rare and are enriched for CpG islands, Polycomb targets and CTCF binding sites, suggesting a new role in shaping cell-type-specific chromatin looping. The atlas provides an essential resource for study of gene regulation and disease-associated genetic variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.


Asunto(s)
Células , Metilación de ADN , Epigénesis Genética , Epigenoma , Humanos , Línea Celular , Células/clasificación , Células/metabolismo , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , ADN/genética , ADN/metabolismo , Desarrollo Embrionario , Elementos de Facilitación Genéticos , Especificidad de Órganos , Proteínas del Grupo Polycomb/metabolismo , Secuenciación Completa del Genoma
4.
Cell ; 153(6): 1219-1227, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23746839

RESUMEN

Adult-born hippocampal neurons are important for cognitive plasticity in rodents. There is evidence for hippocampal neurogenesis in adult humans, although whether its extent is sufficient to have functional significance has been questioned. We have assessed the generation of hippocampal cells in humans by measuring the concentration of nuclear-bomb-test-derived ¹4C in genomic DNA, and we present an integrated model of the cell turnover dynamics. We found that a large subpopulation of hippocampal neurons constituting one-third of the neurons is subject to exchange. In adult humans, 700 new neurons are added in each hippocampus per day, corresponding to an annual turnover of 1.75% of the neurons within the renewing fraction, with a modest decline during aging. We conclude that neurons are generated throughout adulthood and that the rates are comparable in middle-aged humans and mice, suggesting that adult hippocampal neurogenesis may contribute to human brain function.


Asunto(s)
Envejecimiento , Hipocampo/citología , Hipocampo/fisiología , Neurogénesis , Neuronas/citología , Adulto , Animales , Humanos , Ratones , Modelos Biológicos , Neuronas/fisiología , Datación Radiométrica/métodos
5.
Int J Obes (Lond) ; 45(5): 934-943, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33510393

RESUMEN

Cell senescence is defined as a state of irreversible cell cycle arrest combined with DNA damage and the induction of a senescence-associated secretory phenotype (SASP). This includes increased secretion of many inflammatory agents, proteases, miRNA's, and others. Cell senescence has been widely studied in oncogenesis and has generally been considered to be protective, due to cell cycle arrest and the inhibition of proliferation. Cell senescence is also associated with ageing and extensive experimental data support its role in generating the ageing-associated phenotype. Senescent cells can also influence proximal "healthy" cells through SASPs and, e.g., inhibit normal development of progenitor/stem cells, thereby preventing tissue replacement of dying cells and reducing organ functions. Recent evidence demonstrates that SASPs may also play important roles in several chronic diseases including diabetes and cardiovascular disease. White adipose tissue (WAT) cells are highly susceptible to becoming senescent both with ageing but also with obesity and type 2 diabetes, independently of chronological age. WAT senescence is associated with inappropriate expansion (hypertrophy) of adipocytes, insulin resistance, and dyslipidemia. Major efforts have been made to identify approaches to delete senescent cells including the use of "senolytic" compounds. The most established senolytic treatment to date is the combination of dasatinib, an antagonist of the SRC family of kinases, and the antioxidant quercetin. This combination reduces cell senescence and improves chronic disorders in experimental animal models. Although only small and short-term studies have been performed in man, no severe adverse effects have been reported. Hopefully, these or other senolytic agents may provide novel ways to prevent and treat different chronic diseases in man. Here we review the current knowledge on cellular senescence in both murine and human studies. We also discuss the pathophysiological role of this process and the potential therapeutic relevance of targeting senescence selectively in WAT.


Asunto(s)
Tejido Adiposo Blanco/citología , Senescencia Celular , Fenotipo Secretor Asociado a la Senescencia , Envejecimiento , Animales , Diabetes Mellitus Tipo 2 , Humanos , Ratones , Obesidad , Senoterapéuticos
6.
Cytometry A ; 97(8): 800-810, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32150325

RESUMEN

Cytometer characterization is critical to define operational bounds within which the data generated are reliable and reproducible. Existing instrument optimization and characterization protocols were developed for cytometers relying on photomultiplier tubes (PMTs) for photon detection. Recently, instrument manufacturers have begun incorporating avalanche photodiodes (APDs) in place of PMTs. Differences in noise and signal amplification properties of the two detector types make many of the established PMT characterization protocols inappropriate for APD-based instruments. In this article, we tested (three machines on two different sites) a variety of approaches to determine the best method for APD optimization on the Beckman Coulter CytoFLEX™ (CytoFLEX). From this, we propose easy-to-implement guidelines for CytoFLEX characterization and operation. These protocols are not designed to compare APD versus PMT based systems, nor are they designed to directly compare different CytoFlex instruments. Following these protocols will allow CytoFLEX users to characterize their instruments and help to identify optimized settings that allow for the generation of consistent and reproducible data. © 2020 International Society for Advancement of Cytometry.


Asunto(s)
Fotones
7.
Proc Natl Acad Sci U S A ; 113(13): E1826-34, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976580

RESUMEN

Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic ß-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics.


Asunto(s)
Metilación de ADN , ADN/sangre , Células Secretoras de Insulina/patología , Oligodendroglía/patología , Adolescente , Adulto , Anciano , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Estudios de Casos y Controles , Muerte Celular , Niño , Preescolar , ADN/metabolismo , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Femenino , Marcadores Genéticos , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/genética , Esclerosis Múltiple Recurrente-Remitente/patología , Especificidad de Órganos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Pancreatitis Crónica/genética , Pancreatitis Crónica/patología , Regiones Promotoras Genéticas , Sensibilidad y Especificidad , Adulto Joven
8.
Nature ; 478(7367): 110-3, 2011 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-21947005

RESUMEN

Adipose tissue mass is determined by the storage and removal of triglycerides in adipocytes. Little is known, however, about adipose lipid turnover in humans in health and pathology. To study this in vivo, here we determined lipid age by measuring (14)C derived from above ground nuclear bomb tests in adipocyte lipids. We report that during the average ten-year lifespan of human adipocytes, triglycerides are renewed six times. Lipid age is independent of adipocyte size, is very stable across a wide range of adult ages and does not differ between genders. Adipocyte lipid turnover, however, is strongly related to conditions with disturbed lipid metabolism. In obesity, triglyceride removal rate (lipolysis followed by oxidation) is decreased and the amount of triglycerides stored each year is increased. In contrast, both lipid removal and storage rates are decreased in non-obese patients diagnosed with the most common hereditary form of dyslipidaemia, familial combined hyperlipidaemia. Lipid removal rate is positively correlated with the capacity of adipocytes to break down triglycerides, as assessed through lipolysis, and is inversely related to insulin resistance. Our data support a mechanism in which adipocyte lipid storage and removal have different roles in health and pathology. High storage but low triglyceride removal promotes fat tissue accumulation and obesity. Reduction of both triglyceride storage and removal decreases lipid shunting through adipose tissue and thus promotes dyslipidaemia. We identify adipocyte lipid turnover as a novel target for prevention and treatment of metabolic disease.


Asunto(s)
Tejido Adiposo/metabolismo , Salud , Metabolismo de los Lípidos , Enfermedades Metabólicas/metabolismo , Adipocitos/química , Adipocitos/metabolismo , Tejido Adiposo/citología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Radioisótopos de Carbono/análisis , Tamaño de la Célula , Senescencia Celular , Niño , Preescolar , Estudios de Cohortes , ADN/química , Dislipidemias/metabolismo , Dislipidemias/patología , Humanos , Hiperlipidemia Familiar Combinada/genética , Hiperlipidemia Familiar Combinada/metabolismo , Hiperlipidemia Familiar Combinada/patología , Lipólisis , Persona de Mediana Edad , Armas Nucleares , Obesidad/metabolismo , Grasa Subcutánea/metabolismo , Factores de Tiempo , Triglicéridos/análisis , Triglicéridos/metabolismo , Adulto Joven
9.
Am J Physiol Endocrinol Metab ; 308(9): E822-9, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25738783

RESUMEN

Brown adipose tissue (BAT) thermogenesis relies on blood flow to be supplied with nutrients and oxygen and for the distribution of the generated heat to the rest of the body. Therefore, it is fundamental to understand the mechanisms by which blood flow is regulated and its relation to thermogenesis. Here, we present high-resolution laser-Doppler imaging (HR-LDR) as a novel method for noninvasive in vivo measurement of BAT blood flow in mice. Using HR-LDR, we found that norepinephrine stimulation increases BAT blood flow in a dose-dependent manner and that this response is profoundly modulated by environmental temperature acclimation. Surprisingly, we found that mice lacking uncoupling protein 1 (UCP1) have fully preserved BAT blood flow response to norepinephrine despite failing to perform thermogenesis. BAT blood flow was not directly correlated to systemic glycemia, but glucose injections could transiently increase tissue perfusion. Inguinal white adipose tissue, also known as a brite/beige adipose tissue, was also sensitive to cold acclimation and similarly increased blood flow in response to norepinephrine. In conclusion, using a novel noninvasive method to detect BAT perfusion, we demonstrate that adrenergically stimulated BAT blood flow is qualitatively and quantitatively fully independent of thermogenesis, and therefore, it is not a reliable parameter for the estimation of BAT activation and heat generation.


Asunto(s)
Tejido Adiposo Pardo/efectos de los fármacos , Norepinefrina/farmacología , Flujo Sanguíneo Regional/efectos de los fármacos , Termogénesis/fisiología , Aclimatación/efectos de los fármacos , Tejido Adiposo Pardo/irrigación sanguínea , Tejido Adiposo Pardo/metabolismo , Adrenérgicos/farmacología , Animales , Composición Corporal/efectos de los fármacos , Composición Corporal/fisiología , Femenino , Hemodinámica/efectos de los fármacos , Flujometría por Láser-Doppler , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
10.
Nature ; 453(7196): 783-7, 2008 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-18454136

RESUMEN

Obesity is increasing in an epidemic manner in most countries and constitutes a public health problem by enhancing the risk for cardiovascular disease and metabolic disorders such as type 2 diabetes. Owing to the increase in obesity, life expectancy may start to decrease in developed countries for the first time in recent history. The factors determining fat mass in adult humans are not fully understood, but increased lipid storage in already developed fat cells (adipocytes) is thought to be most important. Here we show that adipocyte number is a major determinant for the fat mass in adults. However, the number of fat cells stays constant in adulthood in lean and obese individuals, even after marked weight loss, indicating that the number of adipocytes is set during childhood and adolescence. To establish the dynamics within the stable population of adipocytes in adults, we have measured adipocyte turnover by analysing the integration of 14C derived from nuclear bomb tests in genomic DNA. Approximately 10% of fat cells are renewed annually at all adult ages and levels of body mass index. Neither adipocyte death nor generation rate is altered in early onset obesity, suggesting a tight regulation of fat cell number in this condition during adulthood. The high turnover of adipocytes establishes a new therapeutic target for pharmacological intervention in obesity.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Células Madre/citología , Tejido Adiposo/anatomía & histología , Adulto , Índice de Masa Corporal , Radioisótopos de Carbono , Recuento de Células , Muerte Celular , Tamaño de la Célula , Humanos , Obesidad/patología , Pérdida de Peso
11.
Aging Cell ; : e14295, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102872

RESUMEN

Senescence is an important cellular program occurring in development, tissue repair, cancer, and aging. Increased senescence is also associated with disease states, including obesity and Type 2 diabetes (T2D). Characterizing and quantifying senescent cells at a single cell level has been challenging and particularly difficult in large primary cells, such as human adipocytes. In this study, we present a novel approach that utilizes reflected light for accurate senescence-associated beta-galactosidase (SABG) staining measurements, which can be integrated with immunofluorescence and is compatible with primary mature adipocytes from both human and mouse, as well as with differentiated 3T3-L1 cells. This technique provides a more comprehensive classification of a cell's senescent state by incorporating multiple criteria, including robust sample-specific pH controls. By leveraging the precision of confocal microscopy to detect X-gal crystals using reflected light, we achieved superior sensitivity over traditional brightfield techniques. This strategy allows for the capture of all X-gal precipitates in SABG-stained samples, revealing diverse X-gal staining patterns and improved detection sensitivity. Additionally, we demonstrate that reflected light outperforms western blot analysis for the detection and quantification of senescence in mature human adipocytes, as it offers a more accurate representation of SABG activity. This detection strategy enables a more thorough investigation of senescent cell characteristics and specifically a deeper look at the relationship between adipocyte senescence and obesity associated disorders, such as T2D.

12.
J Lipid Res ; 54(10): 2909-13, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23899442

RESUMEN

Human obesity is associated with decreased triglyceride turnover and impaired lipolysis in adipocytes. We determined whether such defects also occur in subjects with only moderate increase in fat mass. Human abdominal subcutaneous adipose tissue was investigated in healthy, nonobese subjects [body mass index (BMI) > 17 kg/m(2) and BMI < 30 kg/m(2)]. Triglyceride age, reflecting lipid turnover, was examined in 41 subjects by assessing the incorporation of atmospheric (14)C into adipose lipids. Adipocyte lipolysis was examined as the ability of lipolytic agents to stimulate glycerol release in 333 subjects. Adipocyte triglyceride age was markedly increased in overweight (BMI ≥ 25 kg/m(2)) compared with lean subjects (P = 0.017) with triglyceride T1/2 of 14 and 9 months, respectively (P = 0.04). Triglyceride age correlated positively with BMI (P = 0.002) but not with adipocyte volume (P = 0.2). Noradrenaline-, isoprenaline- or dibutyryl cyclic AMP-induced lipolysis was inversely correlated with triglyceride age (P < 0.01) and BMI (P < 0.0001) independently of basal lipolysis, gender, and nicotine use. Current, but not the highest or lowest BMI in adult life, correlated significantly (inversely) with lipolysis. In conclusion, adipocyte triglyceride turnover and lipolytic activity are decreased in overweight subjects and reflect the current BMI status. These changes may confer an increased risk for early development and/or maintenance of excess body fat.


Asunto(s)
Adipocitos/metabolismo , Lipólisis , Sobrepeso/metabolismo , Triglicéridos/metabolismo , Estudios de Casos y Controles , Tamaño de la Célula , Células Cultivadas , Femenino , Semivida , Humanos , Masculino
13.
Mol Cell Proteomics ; 9(5): 1022-30, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19965905

RESUMEN

Age determination of unknown human bodies is important in the setting of a crime investigation or a mass disaster because the age at death, birth date, and year of death as well as gender can guide investigators to the correct identity among a large number of possible matches. Traditional morphological methods used by anthropologists to determine age are often imprecise, whereas chemical analysis of tooth dentin, such as aspartic acid racemization, has shown reproducible and more precise results. In this study, we analyzed teeth from Swedish individuals using both aspartic acid racemization and radiocarbon methodologies. The rationale behind using radiocarbon analysis is that aboveground testing of nuclear weapons during the cold war (1955-1963) caused an extreme increase in global levels of carbon-14 ((14)C), which has been carefully recorded over time. Forty-four teeth from 41 individuals were analyzed using aspartic acid racemization analysis of tooth crown dentin or radiocarbon analysis of enamel, and 10 of these were split and subjected to both radiocarbon and racemization analysis. Combined analysis showed that the two methods correlated well (R(2) = 0.66, p < 0.05). Radiocarbon analysis showed an excellent precision with an overall absolute error of 1.0 +/- 0.6 years. Aspartic acid racemization also showed a good precision with an overall absolute error of 5.4 +/- 4.2 years. Whereas radiocarbon analysis gives an estimated year of birth, racemization analysis indicates the chronological age of the individual at the time of death. We show how these methods in combination can also assist in the estimation of date of death of an unidentified victim. This strategy can be of significant assistance in forensic casework involving dead victim identification.


Asunto(s)
Determinación de la Edad por los Dientes/métodos , Ácido Aspártico/análisis , Ácido Aspártico/química , Ciencias Forenses/métodos , Datación Radiométrica/métodos , Esmalte Dental/química , Homicidio , Humanos , Modelos Lineales , Estereoisomerismo , Corona del Diente/química
14.
Front Cell Dev Biol ; 10: 1003219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483678

RESUMEN

Adipocytes can increase in volume up to a thousand-fold, storing excess calories as triacylglycerol in large lipid droplets. The dramatic morphological changes required of adipocytes demands extensive cytoskeletal remodeling, including lipid droplet and plasma membrane expansion. Cell growth-related signalling pathways are activated, stimulating the production of sufficient amino acids, functional lipids and nucleotides to meet the increasing cellular needs of lipid storage, metabolic activity and adipokine secretion. Continued expansion gives rise to enlarged (hypertrophic) adipocytes. This can result in a failure to maintain growth-related homeostasis and an inability to cope with excess nutrition or respond to stimuli efficiently, ultimately leading to metabolic dysfunction. We summarize recent studies which investigate the functional and cellular structure remodeling of hypertrophic adipocytes. How adipocytes adapt to an enlarged cell size and how this relates to cellular dysfunction are discussed. Understanding the healthy and pathological processes involved in adipocyte hypertrophy may shed light on new strategies for promoting healthy adipose tissue expansion.

15.
Elife ; 112022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35699419

RESUMEN

Schizophrenia is a common, severe, and debilitating psychiatric disorder. Despite extensive research there is as yet no biological marker that can aid in its diagnosis and course prediction. This precludes early detection and intervention. Imaging studies suggest brain volume loss around the onset and over the first few years of schizophrenia, and apoptosis has been proposed as the underlying mechanism. Cell-free DNA (cfDNA) fragments are released into the bloodstream following cell death. Tissue-specific methylation patterns allow the identification of the tissue origins of cfDNA. We developed a cocktail of brain-specific DNA methylation markers, and used it to assess the presence of brain-derived cfDNA in the plasma of patients with a first psychotic episode. We detected significantly elevated neuron- (p=0.0013), astrocyte- (p=0.0016), oligodendrocyte- (p=0.0129), and whole brain-derived (p=0.0012) cfDNA in the plasma of patients during their first psychotic episode (n=29), compared with healthy controls (n=31). Increased cfDNA levels were not correlated with psychotropic medications use. Area under the curve (AUC) was 0.77, with 65% sensitivity at 90% specificity in patients with a psychotic episode. Potential interpretations of these findings include increased brain cell death, disruption of the blood-brain barrier, or a defect in clearance of material from dying brain cells. Brain-specific cfDNA methylation markers can potentially assist early detection and monitoring of schizophrenia and thus allow early intervention and adequate therapy.


Asunto(s)
Ácidos Nucleicos Libres de Células , Trastornos Psicóticos , Biomarcadores de Tumor/genética , Encéfalo , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , Marcadores Genéticos , Humanos , Trastornos Psicóticos/genética
16.
JCI Insight ; 7(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35076021

RESUMEN

Cancer inflicts damage to surrounding normal tissues, which can culminate in fatal organ failure. Here, we demonstrate that cell death in organs affected by cancer can be detected by tissue-specific methylation patterns of circulating cell-free DNA (cfDNA). We detected elevated levels of hepatocyte-derived cfDNA in the plasma of patients with liver metastases originating from different primary tumors, compared with cancer patients without liver metastases. In addition, patients with localized pancreatic or colon cancer showed elevated hepatocyte cfDNA, suggesting liver damage inflicted by micrometastatic disease, by primary pancreatic tumor pressing the bile duct, or by a systemic response to the primary tumor. We also identified elevated neuron-, oligodendrocyte-, and astrocyte-derived cfDNA in a subpopulation of patients with brain metastases compared with cancer patients without brain metastasis. Cell type-specific cfDNA methylation markers enabled the identification of collateral tissue damage in cancer, revealing the presence of metastases in specific locations and potentially assisting in early cancer detection.


Asunto(s)
Neoplasias Encefálicas , Ácidos Nucleicos Libres de Células , Metilación de ADN , Biopsia Líquida/métodos , Neoplasias Hepáticas , Metástasis de la Neoplasia , Neoplasias Pancreáticas , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/sangre , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Ácidos Nucleicos Libres de Células/análisis , Ácidos Nucleicos Libres de Células/sangre , Detección Precoz del Cáncer/métodos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología
17.
Nature ; 437(7057): 333-4, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16163340

RESUMEN

Establishing the age at death of individuals is an important step in their identification and can be done with high precision up to adolescence by analysis of dentition, but it is more difficult in adults. Here we show that the amount of radiocarbon present in tooth enamel as a result of nuclear bomb testing during 1955-63 is a remarkably accurate indicator of when a person was born. Age is determined to within 1.6 years, whereas the commonly used morphological evaluation of skeletal remains and tooth wear is sensitive to within 5-10 years in adults.


Asunto(s)
Determinación de la Edad por los Dientes/métodos , Atmósfera/química , Esmalte Dental/química , Ceniza Radiactiva/análisis , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono/análisis , Dieta , Odontología Forense/métodos , Humanos , Sensibilidad y Especificidad , Factores de Tiempo
18.
Nat Med ; 27(11): 1941-1953, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34608330

RESUMEN

Obesity is considered an important factor for many chronic diseases, including diabetes, cardiovascular disease and cancer. The expansion of adipose tissue in obesity is due to an increase in both adipocyte progenitor differentiation and mature adipocyte cell size. Adipocytes, however, are thought to be unable to divide or enter the cell cycle. We demonstrate that mature human adipocytes unexpectedly display a gene and protein signature indicative of an active cell cycle program. Adipocyte cell cycle progression associates with obesity and hyperinsulinemia, with a concomitant increase in cell size, nuclear size and nuclear DNA content. Chronic hyperinsulinemia in vitro or in humans, however, is associated with subsequent cell cycle exit, leading to a premature senescent transcriptomic and secretory profile in adipocytes. Premature senescence is rapidly becoming recognized as an important mediator of stress-induced tissue dysfunction. By demonstrating that adipocytes can activate a cell cycle program, we define a mechanism whereby mature human adipocytes senesce. We further show that by targeting the adipocyte cell cycle program using metformin, it is possible to influence adipocyte senescence and obesity-associated adipose tissue inflammation.


Asunto(s)
Adipocitos/metabolismo , Ciclo Celular/fisiología , Senescencia Celular/fisiología , Hiperinsulinismo/patología , Obesidad/patología , Tejido Adiposo/metabolismo , Diferenciación Celular/fisiología , Ciclina D1/metabolismo , Humanos , Hipoglucemiantes/farmacología , Metformina/farmacología
19.
Biochem Biophys Res Commun ; 396(1): 101-4, 2010 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-20494119

RESUMEN

Obesity is a condition where excess body fat accumulates to such an extent that one's health may be affected. Owing to the cardiovascular and metabolic disorders associated with obesity, and the epidemic of obesity facing most countries today, life expectancy in the developed world may start to decrease for the first time in recent history. Other conditions, such as anorexia nervosa and cachexia, are characterised by subnormal levels of adipose tissue and as with obesity lead to morbidity and mortality. Given the significant personal and economic costs of these conditions and their increasing prevalence in society, understanding the factors that determine the fat mass is therefore of prime interest and may lead to effective treatments and/or interventions for these disorders. Fat mass can be regulated in two ways. The lipid filling of pre-existing fat cells could be altered and the number of fat cells could be changed by the generation of new fat cells or the dying of old ones (i.e. adipocyte turnover). This review summarizes what is known about fat cell turnover in humans and the potential clinical implications.


Asunto(s)
Adipocitos Blancos/fisiología , Tejido Adiposo Blanco/fisiopatología , Obesidad/fisiopatología , Pérdida de Peso , Humanos , Masculino
20.
Cell Rep ; 27(1): 213-225.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30943403

RESUMEN

White adipose tissue (WAT) is a central factor in the development of type 2 diabetes, but there is a paucity of translational models to study mature adipocytes. We describe a method for the culture of mature white adipocytes under a permeable membrane. Compared to existing culture methods, MAAC (membrane mature adipocyte aggregate cultures) better maintain adipogenic gene expression, do not dedifferentiate, display reduced hypoxia, and remain functional after long-term culture. Subcutaneous and visceral adipocytes cultured as MAAC retain depot-specific gene expression, and adipocytes from both lean and obese patients can be cultured. Importantly, we show that rosiglitazone treatment or PGC1α overexpression in mature white adipocytes induces a brown fat transcriptional program, providing direct evidence that human adipocytes can transdifferentiate into brown-like adipocytes. Together, these data show that MAAC are a versatile tool for studying phenotypic changes of mature adipocytes and provide an improved translational model for drug development.


Asunto(s)
Adipocitos Marrones/fisiología , Adipocitos Blancos/citología , Adipocitos Blancos/fisiología , Adipogénesis/fisiología , Transdiferenciación Celular , Cultivo Primario de Células/métodos , Adipocitos Marrones/citología , Animales , Transdiferenciación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Membranas Artificiales , Ratones , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA