Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 149(2): 295-306, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22484060

RESUMEN

Congenital scoliosis, a lateral curvature of the spine caused by vertebral defects, occurs in approximately 1 in 1,000 live births. Here we demonstrate that haploinsufficiency of Notch signaling pathway genes in humans can cause this congenital abnormality. We also show that in a mouse model, the combination of this genetic risk factor with an environmental condition (short-term gestational hypoxia) significantly increases the penetrance and severity of vertebral defects. We demonstrate that hypoxia disrupts FGF signaling, leading to a temporary failure of embryonic somitogenesis. Our results potentially provide a mechanism for the genesis of a host of common sporadic congenital abnormalities through gene-environment interaction.


Asunto(s)
Interacción Gen-Ambiente , Escoliosis/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Haploinsuficiencia , Humanos , Hipoxia/metabolismo , Masculino , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Linaje , Penetrancia , Receptores Notch/metabolismo , Escoliosis/congénito , Transducción de Señal , Columna Vertebral/embriología
2.
Bioessays ; 44(2): e2100241, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34845742

RESUMEN

More than 6% of babies are born with a structural or functional defect, and many of these need special care and treatment to survive and thrive. Such defects can be inherited, arise through exposure to altered conditions or compounds in the womb, or result from a combination of genetic and environmental factors. Since the 1940s, animal experiments and epidemiological studies have identified many environmental factors that can cause particular birth defects. More recently, advances in genomics have allowed a simple genetic diagnosis in ∼ 30% of birth defects. However, the cause of the remainder is a mystery. I believe that a key limiter to successful identification of new environmental factors is that clinicians, epidemiologists and developmental biologists all approach the topic from different angles. I propose that better communication between such experts will further increase our understanding of the environmental causes of birth defects, and potentially reduce their global burden.


Asunto(s)
Comunicación , Genómica , Animales
3.
Differentiation ; 128: 1-12, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36194927

RESUMEN

Myhre syndrome is a connective tissue disorder characterized by congenital cardiovascular, craniofacial, respiratory, skeletal, and cutaneous anomalies as well as intellectual disability and progressive fibrosis. It is caused by germline variants in the transcriptional co-regulator SMAD4 that localize at two positions within the SMAD4 protein, I500 and R496, with I500 V/T/M variants more commonly identified in individuals with Myhre syndrome. Here we assess the functional impact of SMAD4-I500V variant, identified in two previously unpublished individuals with Myhre syndrome, and provide novel insights into the molecular mechanism of SMAD4-I500V dysfunction. We show that SMAD4-I500V can dimerize, but its transcriptional activity is severely compromised. Our data show that SMAD4-I500V acts dominant-negatively on SMAD4 and on receptor-regulated SMADs, affecting transcription of target genes. Furthermore, SMAD4-I500V impacts the transcription and function of crucial developmental transcription regulator, NKX2-5. Overall, our data reveal a dominant-negative model of disease for SMAD4-I500V where the function of SMAD4 encoded on the remaining allele, and of co-factors, are perturbed by the continued heterodimerization of the variant, leading to dysregulation of TGF and BMP signaling. Our findings not only provide novel insights into the mechanism of Myhre syndrome pathogenesis but also extend the current knowledge of how pathogenic variants in SMAD proteins cause disease.


Asunto(s)
Deformidades Congénitas de la Mano , Discapacidad Intelectual , Humanos , Discapacidad Intelectual/genética , Proteína Smad4/genética , Mutación , Deformidades Congénitas de la Mano/genética , Factor de Crecimiento Transformador beta/genética
4.
Hum Mol Genet ; 29(4): 566-579, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-31813956

RESUMEN

Congenital heart disease (CHD) is the most common birth defect and brings with it significant mortality and morbidity. The application of exome and genome sequencing has greatly improved the rate of genetic diagnosis for CHD but the cause in the majority of cases remains uncertain. It is clear that genetics, as well as environmental influences, play roles in the aetiology of CHD. Here we address both these aspects of causation with respect to the Notch signalling pathway. In our CHD cohort, variants in core Notch pathway genes account for 20% of those that cause disease, a rate that did not increase with the inclusion of genes of the broader Notch pathway and its regulators. This is reinforced by case-control burden analysis where variants in Notch pathway genes are enriched in CHD patients. This enrichment is due to variation in NOTCH1. Functional analysis of some novel missense NOTCH1 and DLL4 variants in cultured cells demonstrate reduced signalling activity, allowing variant reclassification. Although loss-of-function variants in DLL4 are known to cause Adams-Oliver syndrome, this is the first report of a hypomorphic DLL4 allele as a cause of isolated CHD. Finally, we demonstrate a gene-environment interaction in mouse embryos between Notch1 heterozygosity and low oxygen- or anti-arrhythmic drug-induced gestational hypoxia, resulting in an increased incidence of heart defects. This implies that exposure to environmental insults such as hypoxia could explain variable expressivity and penetrance of observed CHD in families carrying Notch pathway variants.


Asunto(s)
Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Genómica/métodos , Cardiopatías Congénitas/patología , Mutación , Receptor Notch1/genética , Animales , Estudios de Casos y Controles , Femenino , Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Secuenciación del Exoma
5.
Hum Mol Genet ; 29(22): 3662-3678, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276377

RESUMEN

The genetic causes of multiple congenital anomalies are incompletely understood. Here, we report novel heterozygous predicted loss-of-function (LoF) and predicted damaging missense variants in the WW domain binding protein 11 (WBP11) gene in seven unrelated families with a variety of overlapping congenital malformations, including cardiac, vertebral, tracheo-esophageal, renal and limb defects. WBP11 encodes a component of the spliceosome with the ability to activate pre-messenger RNA splicing. We generated a Wbp11 null allele in mouse using CRISPR-Cas9 targeting. Wbp11 homozygous null embryos die prior to E8.5, indicating that Wbp11 is essential for development. Fewer Wbp11 heterozygous null mice are found than expected due to embryonic and postnatal death. Importantly, Wbp11 heterozygous null mice are small and exhibit defects in axial skeleton, kidneys and esophagus, similar to the affected individuals, supporting the role of WBP11 haploinsufficiency in the development of congenital malformations in humans. LoF WBP11 variants should be considered as a possible cause of VACTERL association as well as isolated Klippel-Feil syndrome, renal agenesis or esophageal atresia.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de Unión al ADN/genética , Haploinsuficiencia/genética , Riñón/metabolismo , Factores de Empalme de ARN/genética , Anomalías Múltiples/patología , Canal Anal/anomalías , Canal Anal/patología , Animales , Esófago/anomalías , Esófago/metabolismo , Esófago/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Heterocigoto , Humanos , Riñón/anomalías , Riñón/patología , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/patología , Mutación con Pérdida de Función/genética , Ratones , Empalme del ARN/genética , Columna Vertebral/anomalías , Columna Vertebral/patología , Tráquea/anomalías , Tráquea/patología
6.
Development ; 146(4)2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30787001

RESUMEN

Congenital heart disease (CHD) is the most common type of birth defect. In recent years, research has focussed on identifying the genetic causes of CHD. However, only a minority of CHD cases can be attributed to single gene mutations. In addition, studies have identified different environmental stressors that promote CHD, but the additive effect of genetic susceptibility and environmental factors is poorly understood. In this context, we have investigated the effects of short-term gestational hypoxia on mouse embryos genetically predisposed to heart defects. Exposure of mouse embryos heterozygous for Tbx1 or Fgfr1/Fgfr2 to hypoxia in utero increased the incidence and severity of heart defects while Nkx2-5+/- embryos died within 2 days of hypoxic exposure. We identified the molecular consequences of the interaction between Nkx2-5 and short-term gestational hypoxia, which suggest that reduced Nkx2-5 expression and a prolonged hypoxia-inducible factor 1α response together precipitate embryo death. Our study provides insight into the causes of embryo loss and variable penetrance of monogenic CHD, and raises the possibility that cases of foetal death and CHD in humans could be caused by similar gene-environment interactions.


Asunto(s)
Interacción Gen-Ambiente , Cardiopatías Congénitas/genética , Corazón/embriología , Proteína Homeótica Nkx-2.5/genética , Proteínas de Homeodominio/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Animales , Apoptosis , Proliferación Celular , Embrión de Mamíferos/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Corazón/diagnóstico por imagen , Heterocigoto , Proteína Homeótica Nkx-2.5/fisiología , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Oxígeno/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Proteínas de Dominio T Box/genética , Factores de Tiempo
7.
Basic Res Cardiol ; 116(1): 14, 2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637999

RESUMEN

Titin truncating variants are a well-established cause of cardiomyopathy; however, the role of titin missense variants is less well understood. Here we describe the generation of a mouse model to investigate the underlying disease mechanism of a previously reported titin A178D missense variant identified in a family with non-compaction and dilated cardiomyopathy. Heterozygous and homozygous mice carrying the titin A178D missense variant were characterised in vivo by echocardiography. Heterozygous mice had no detectable phenotype at any time point investigated (up to 1 year). By contrast, homozygous mice developed dilated cardiomyopathy from 3 months. Chronic adrenergic stimulation aggravated the phenotype. Targeted transcript profiling revealed induction of the foetal gene programme and hypertrophic signalling pathways in homozygous mice, and these were confirmed at the protein level. Unsupervised proteomics identified downregulation of telethonin and four-and-a-half LIM domain 2, as well as the upregulation of heat shock proteins and myeloid leukaemia factor 1. Loss of telethonin from the cardiac Z-disc was accompanied by proteasomal degradation; however, unfolded telethonin accumulated in the cytoplasm, leading to a proteo-toxic response in the mice.We show that the titin A178D missense variant is pathogenic in homozygous mice, resulting in cardiomyopathy. We also provide evidence of the disease mechanism: because the titin A178D variant abolishes binding of telethonin, this leads to its abnormal cytoplasmic accumulation. Subsequent degradation of telethonin by the proteasome results in proteasomal overload, and activation of a proteo-toxic response. The latter appears to be a driving factor for the cardiomyopathy observed in the mouse model.


Asunto(s)
Cardiomiopatías/genética , Edición Génica , Mutación Missense , Proteínas Quinasas/genética , Factores de Edad , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/fisiopatología , Conectina/metabolismo , Predisposición Genética a la Enfermedad , Heterocigoto , Homocigoto , Ratones Endogámicos C57BL , Ratones Mutantes , Fenotipo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/metabolismo , Proteolisis , Proteoma , Transcriptoma , Función Ventricular Izquierda
8.
N Engl J Med ; 377(6): 544-552, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28792876

RESUMEN

BACKGROUND: Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. METHODS: We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system. RESULTS: Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. CONCLUSIONS: Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice. (Funded by the National Health and Medical Research Council of Australia and others.).


Asunto(s)
3-Hidroxiantranilato 3,4-Dioxigenasa/genética , Anomalías Congénitas/genética , Suplementos Dietéticos , Hidrolasas/genética , NAD/deficiencia , Niacina/uso terapéutico , 3-Hidroxiantranilato 3,4-Dioxigenasa/metabolismo , Canal Anal/anomalías , Animales , Anomalías Congénitas/prevención & control , Modelos Animales de Enfermedad , Esófago/anomalías , Femenino , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/prevención & control , Humanos , Hidrolasas/metabolismo , Riñón/anomalías , Deformidades Congénitas de las Extremidades/genética , Deformidades Congénitas de las Extremidades/prevención & control , Masculino , Ratones , Ratones Noqueados , Mutación , NAD/biosíntesis , NAD/genética , Análisis de Secuencia de ADN , Columna Vertebral/anomalías , Tráquea/anomalías
9.
Development ; 143(14): 2561-72, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27436040

RESUMEN

Congenital heart disease (CHD) is an enigma. It is the most common human birth defect and yet, even with the application of modern genetic and genomic technologies, only a minority of cases can be explained genetically. This is because environmental stressors also cause CHD. Here we propose a plausible non-genetic mechanism for induction of CHD by environmental stressors. We show that exposure of mouse embryos to short-term gestational hypoxia induces the most common types of heart defect. This is mediated by the rapid induction of the unfolded protein response (UPR), which profoundly reduces FGF signaling in cardiac progenitor cells of the second heart field. Thus, UPR activation during human pregnancy might be a common cause of CHD. Our findings have far-reaching consequences because the UPR is activated by a myriad of environmental or pathophysiological conditions. Ultimately, our discovery could lead to preventative strategies to reduce the incidence of human CHD.


Asunto(s)
Cardiopatías Congénitas/etiología , Cardiopatías Congénitas/patología , Estrés Fisiológico , Respuesta de Proteína Desplegada , Animales , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/patología , Femenino , Factores de Crecimiento de Fibroblastos/metabolismo , Ratones Endogámicos C57BL , Oxígeno/farmacología , Fenotipo , Embarazo , Biosíntesis de Proteínas/efectos de los fármacos , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Hum Mol Genet ; 24(5): 1234-42, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25343988

RESUMEN

Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition.


Asunto(s)
Enfermedades del Desarrollo Óseo/genética , Heterocigoto , Mutación , Proteínas Represoras/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Células Cultivadas , Codón sin Sentido , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Exoma , Exones , Femenino , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mutantes/genética , Linaje , Carácter Cuantitativo Heredable , Empalme del ARN , Proteínas Represoras/metabolismo , Somitos/metabolismo , Columna Vertebral/patología , Proteínas de Dominio T Box , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Dev Biol ; 392(1): 62-79, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24803182

RESUMEN

CITED2 is a transcriptional co-factor with important roles in many organs of the developing mammalian embryo. Complete deletion of this gene causes severe malformation of the placenta, and results in significantly reduced embryonic growth and death from E14.5. The placenta is a complex organ originating from cells derived from three lineages: the maternal decidua, the trophectoderm, and the extra-embryonic mesoderm. Cited2 is expressed in many of these cell types, but its exact role in the formation of the placenta is unknown. Here we use a conditional deletion approach to remove Cited2 from overlapping subsets of trophectoderm and extra-embryonic mesoderm. We find that Cited2 in sinusoidal trophoblast giant cells and syncytiotrophoblasts is likely to have a non-cell autonomous role in patterning of the pericytes associated with the embryonic capillaries. This function is likely to be mediated by PDGF signaling. Furthermore, we also identify that loss of Cited2 in syncytiotrophoblasts results in the subcellular mislocalization of one of the major lactate transporters in the placenta, SLC16A3 (MCT4). We hypothesize that the embryonic growth retardation observed in Cited2 null embryos is due in part to a disorganized embryonic capillary network, and in part due to abnormalities of the nutrient transport functions of the feto-maternal interface.


Asunto(s)
Tipificación del Cuerpo , Capilares/embriología , Placenta/irrigación sanguínea , Placenta/embriología , Circulación Placentaria/genética , Proteínas Represoras/genética , Transactivadores/genética , Trofoblastos/enzimología , Actinas/biosíntesis , Animales , Proteínas Portadoras/metabolismo , Desarrollo Embrionario , Femenino , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Transportadores de Ácidos Monocarboxílicos/biosíntesis , Proteínas Musculares/biosíntesis , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Pericitos/citología , Pericitos/fisiología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/biosíntesis , Factor de Crecimiento Derivado de Plaquetas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Embarazo , Proteínas Proto-Oncogénicas c-sis/biosíntesis , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/biosíntesis , Simportadores/biosíntesis
12.
Dev Biol ; 391(1): 99-110, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24657234

RESUMEN

Mammalian embryos develop in a low oxygen environment. The transcription factor hypoxia inducible factor 1a (HIF1α) is a key element in the cellular response to hypoxia. Complete deletion of Hif1α from the mouse conceptus causes extensive placental, vascular and heart defects, resulting in embryonic lethality. However the precise role of Hif1α in each of these organ systems remains unknown. To further investigate, we conditionally-deleted Hif1α from mesoderm, vasculature and heart individually. Surprisingly, deletion from these tissues did not recapitulate the same severe heart phenotype or embryonic lethality. Placental insufficiency, such as occurs in the complete Hif1α null, results in elevated cellular hypoxia in mouse embryos. We hypothesized that subjecting the Hif1α conditional null embryos to increased hypoxic stress might exacerbate the effects of tissue-specific Hif1α deletion. We tested this hypothesis using a model system mimicking placental insufficiency. We found that the majority of embryos lacking Hif1α in the heart died when exposed to non-physiological hypoxia. This was a heart-specific phenomenon, as HIF1α protein accumulated predominantly in the myocardium of hypoxia-stressed embryos. Our study demonstrates the vulnerability of the heart to lowered oxygen levels, and that under such conditions of non-physiological hypoxia the embryo absolutely requires Hif1α to continue normal development. Importantly, these findings extend our understanding of the roles of Hif1α in cardiovascular development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Interacción Gen-Ambiente , Corazón/embriología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Alelos , Animales , Hipoxia de la Célula , Núcleo Celular/metabolismo , Proliferación Celular , Células Endoteliales/citología , Femenino , Eliminación de Gen , Genotipo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitosis , Miocardio/metabolismo , Oxígeno/metabolismo , Fenotipo , Placenta/metabolismo , Embarazo
13.
Kidney Int ; 87(5): 975-83, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25587709

RESUMEN

Gestational stressors, including glucocorticoids and protein restriction, can affect kidney development and hence final nephron number. Since hypoxia is a common insult during pregnancy, we studied the influence of oxygen tension on kidney development in models designed to represent a pathological hypoxic insult. In vivo mouse models of moderate, transient, midgestational (12% O2, 48 h, 12.5 dpc) or severe, acute, early-gestational (5.5-7.5% O2, 8 h, 9.5-10.5 dpc) hypoxia were developed. The embryo itself is known to mature under hypoxic conditions with embryonic tissue levels of oxygen estimated to be 5%-8% (physiological hypoxia) when the mother is exposed to ambient normoxia. Both in vivo models generated phenotypes seen in patients with congenital anomalies of the kidney and urinary tract (CAKUT). Severe, acute, early hypoxia resulted in duplex kidney, while moderate, transient, midgestational hypoxia permanently reduced ureteric branching and nephron formation. Both models displayed hypoxia-induced reductions in ß-catenin signaling within the ureteric tree and suppression of the downstream target gene, Ccnd1. Thus, we show a link between gestational hypoxia and CAKUT, the phenotype of which varies with timing, duration, and severity of the hypoxic insult.


Asunto(s)
Hipoxia Fetal/complicaciones , Riñón/anomalías , Uréter/metabolismo , Anomalías Urogenitales/etiología , beta Catenina/metabolismo , Animales , Femenino , Hipoxia Fetal/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Transgénicos , Embarazo , Anomalías Urogenitales/metabolismo
14.
Hum Mol Genet ; 22(8): 1625-31, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23335591

RESUMEN

In humans, congenital spinal defects occur with an incidence of 0.5-1 per 1000 live births. One of the most severe syndromes with such defects is spondylocostal dysostosis (SCD). Over the past decade, the genetic basis of several forms of autosomal recessive SCD cases has been solved with the identification of four causative genes (DLL3, MESP2, LFNG and HES7). Autosomal dominant forms of SCD have also been reported, but to date no genetic etiology has been described for these. Here, we have used exome capture and next-generation sequencing to identify a stoploss mutation in TBX6 that segregates with disease in two generations of one family. We show that this mutation has a deleterious effect on the transcriptional activation activity of the TBX6 protein, likely due to haploinsufficiency. In mouse, Tbx6 is essential for the patterning of the vertebral precursor tissues, somites; thus, mutation of TBX6 is likely to be causative of SCD in this family. This is the first identification of the genetic cause of an autosomal dominant form of SCD, and also demonstrates the potential of exome sequencing to identify genetic causes of dominant diseases even in small families with few affected individuals.


Asunto(s)
Anomalías Múltiples/genética , Anomalías Múltiples/patología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Hernia Diafragmática/genética , Hernia Diafragmática/patología , Somitos/metabolismo , Proteínas de Dominio T Box/genética , Anomalías Múltiples/diagnóstico por imagen , Animales , Tipificación del Cuerpo/genética , Modelos Animales de Enfermedad , Genes Dominantes , Cardiopatías Congénitas/diagnóstico por imagen , Hernia Diafragmática/diagnóstico por imagen , Humanos , Ratones , Mutación , Linaje , Radiografía , Análisis de Secuencia de ADN , Somitos/crecimiento & desarrollo , Proteínas de Dominio T Box/metabolismo
15.
Hum Mol Genet ; 20(5): 905-16, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21147753

RESUMEN

Mutations in the DELTA-LIKE 3 (DLL3) gene cause the congenital abnormal vertebral segmentation syndrome, spondylocostal dysostosis (SCD). DLL3 is a divergent member of the DSL family of Notch ligands that does not activate signalling in adjacent cells, but instead inhibits signalling when expressed in the same cell as the Notch receptor. Targeted deletion of Dll3 in the mouse causes a developmental defect in somite segmentation, and consequently vertebral formation is severely disrupted, closely resembling human SCD. In contrast to the canonical Notch signalling pathway, very little is known about the mechanism of cis-inhibition by DSL ligands. Here, we report that Dll3 is not presented on the surface of presomitic mesoderm (PSM) cells in vivo, but instead interacts with Notch1 in the late endocytic compartment. This suggests for the first time a mechanism for Dll3-mediated cis-inhibition of Notch signalling, with Dll3 targeting newly synthesized Notch1 for lysosomal degradation prior to post-translational processing and cell surface presentation of the receptor. An inhibitory role for Dll3 in vivo is further supported by the juxtaposition of Dll3 protein and Notch1 signalling in the PSM. Defining a mechanism for cis-inhibition of Notch signalling by Dll3 not only contributes greatly to our understanding of this ligand's function during the formation of the vertebral column, but also provides a paradigm for understanding how other ligands of Notch cis-inhibit signalling.


Asunto(s)
Regulación hacia Abajo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptor Notch1/metabolismo , Anomalías Múltiples/embriología , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Hernia Diafragmática/embriología , Hernia Diafragmática/genética , Hernia Diafragmática/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Lisosomas/metabolismo , Masculino , Proteínas de la Membrana/genética , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Unión Proteica , Receptor Notch1/genética , Transducción de Señal
16.
Hum Mol Genet ; 20(6): 1097-110, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21224256

RESUMEN

Cited2 is a transcriptional coactivator that is required for normal development of the embryo and placenta. Cited2-null mice die during gestation with fully penetrant heart defects and partially penetrant laterality defects. The laterality defects occur due to the loss of Nodal expression in the left lateral plate mesoderm (LPM). The cause of the heart defects that arise independently of laterality defects is unknown; they might occur due to an intrinsic requirement for Cited2 in the developing heart, or to disturbances in left-right patterning of the early embryo. Herein it is established that deletion of Cited2 from the heart progenitors does not alter development, and that heart defects in Cited2-null embryos arise due to an extra-cardiac requirement for Cited2 in establishing the left-right body axis. In addition, we provide evidence supporting a role for Cited2 in tissues of the embryo vital for left-right patterning (the node and LPM). Molecular and genetic analysis reveals that Cited2 is required for the initiation, but not propagation of, the left-sided determinant Nodal in the LPM. Moreover, a new role for Cited2 is identified as a potentiator of bone morphogenetic protein (BMP) signalling, counteracting the initiation of Nodal expression in the LPM. These data define Cited2 as a key regulator of left-right patterning in the mammalian embryo, and reveal that the role of Cited2 in cardiac development lies in its extra-cardiac functions. The clinical relevance of these findings lies in the fact that heterozygous mutation of human CITED2 is associated with congenital heart disease and laterality defects.


Asunto(s)
Tipificación del Cuerpo , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/fisiopatología , Corazón/embriología , Proteínas Represoras/deficiencia , Transactivadores/deficiencia , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Modelos Animales de Enfermedad , Femenino , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/genética , Humanos , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Proteínas Represoras/genética , Transducción de Señal , Transactivadores/genética
17.
Am J Med Genet A ; 161A(9): 2244-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23897666

RESUMEN

Spondylocostal dysotosis (SCD) is a rare developmental congenital abnormality of the axial skeleton. Mutation of genes in the Notch signaling pathway cause SCD types 1-5. Dextrocardia with situs inversus is a rare congenital malformation in which the thoracic and abdominal organs are mirror images of normal. Such laterality defects are associated with gene mutations in the Nodal signaling pathway or cilia assembly or function. We investigated two distantly related individuals with a rare combination of severe segmental defects of the vertebrae (SDV) and dextrocardia with situs inversus. We found that both individuals were homozygous for the same mutation in HES7, and that this mutation caused a significant reduction of HES7 protein function; HES7 mutation causes SCD4. Two other individuals with SDV from two unrelated families were found to be homozygous for the same mutation. Interestingly, although the penetrance of the vertebral defects was complete, only 3/7 had dextrocardia with situs inversus, suggesting randomization of left-right patterning. Two of the affected individuals presented with neural tube malformations including myelomeningocele, spina bifida occulta and/or Chiari II malformation. Such neural tube phenotypes are shared with the originally identified SCD4 patient, but have not been reported in the other forms of SCD. In conclusion, it appears that mutation of HES7 is uniquely associated with defects in vertebral, heart and neural tube formation, and this observation will help provide a discriminatory diagnostic guide in patients with SCD, as well as inform molecular genetic testing.


Asunto(s)
Anomalías Múltiples/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Dextrocardia/genética , Cardiopatías Congénitas/genética , Hernia Diafragmática/genética , Mutación , Situs Inversus/genética , Anomalías Múltiples/diagnóstico , Sustitución de Aminoácidos , Animales , Mapeo Cromosómico , Hibridación Genómica Comparativa , Consanguinidad , Dextrocardia/diagnóstico , Femenino , Genotipo , Cardiopatías Congénitas/diagnóstico , Hernia Diafragmática/diagnóstico , Humanos , Lactante , Recién Nacido , Masculino , Ratones , Linaje , Fenotipo , Situs Inversus/diagnóstico
18.
Cells ; 12(5)2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36899856

RESUMEN

Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hypertrophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocardiography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Resolution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell-cycle defects and mitochondrial dysfunction. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteasomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteasomal system is activated; a mechanism that has been implicated in cardiomyopathies previously. In parallel, a lack of functional alpha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell-cycle defects, the likely cause of the death of the embryos. The defects also have wide-ranging morphological consequences.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Hipertrófica , Animales , Masculino , Ratones , Actinina/metabolismo , Corazón , Ubiquitinas
19.
J Cell Biol ; 178(3): 465-76, 2007 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-17664336

RESUMEN

The Notch ligands Dll1 and Dll3 are coexpressed in the presomitic mesoderm of mouse embryos. Despite their coexpression, mutations in Dll1 and Dll3 cause strikingly different defects. To determine if there is any functional equivalence, we replaced Dll1 with Dll3 in mice. Dll3 does not compensate for Dll1; DLL1 activates Notch in Drosophila wing discs, but DLL3 does not. We do not observe evidence for antagonism between DLL1 and DLL3, or repression of Notch activity in mice or Drosophila. In vitro analyses show that differences in various domains of DLL1 and DLL3 individually contribute to their biochemical nonequivalence. In contrast to endogenous DLL1 located on the surface of presomitic mesoderm cells, we find endogenous DLL3 predominantly in the Golgi apparatus. Our data demonstrate distinct in vivo functions for DLL1 and DLL3. They suggest that DLL3 does not antagonize DLL1 in the presomitic mesoderm and warrant further analyses of potential physiological functions of DLL3 in the Golgi network.


Asunto(s)
Embrión de Mamíferos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo , Proteínas de Unión al Calcio , Línea Celular , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/embriología , Embrión de Mamíferos/anatomía & histología , Péptidos y Proteínas de Señalización Intercelular , Péptidos y Proteínas de Señalización Intracelular/genética , Ligandos , Proteínas de la Membrana/genética , Ratones , Fenotipo , Isoformas de Proteínas/genética , Estructura Terciaria de Proteína , Receptores Notch/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Somitos/anatomía & histología , Somitos/fisiología , Distribución Tisular , Alas de Animales/anatomía & histología , Alas de Animales/embriología
20.
Mamm Genome ; 22(7-8): 362-76, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21667129

RESUMEN

The defining characteristic of all vertebrates is a spine composed of a regular sequence of vertebrae. In humans, congenital spinal defects occur with an incidence of 0.5-1 per 1,000 live births and arise when the formation of vertebral precursors in the embryo is disrupted. These precursors (somites) form in a process (somitogenesis) in which each somite is progressively separated from an unsegmented precursor tissue. In the past decade the underlying genetic mechanisms driving this complex process have been dissected using animal models, revealing that it requires the coordinated action of at least 300 genes. Deletion of many of these genes in the mouse produces phenotypes with similar vertebral defects to those observed in human congenital abnormalities. This review highlights the role that such mouse models have played in the identification of the genetic causes of the malsegmentation syndrome spondylocostal dysostosis.


Asunto(s)
Modelos Animales de Enfermedad , Ratones , Enfermedades de la Columna Vertebral/genética , Enfermedades de la Columna Vertebral/fisiopatología , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones/embriología , Ratones/genética , Ratones/metabolismo , Enfermedades de la Columna Vertebral/embriología , Enfermedades de la Columna Vertebral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA