Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(8): 2239-2254.e39, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33831375

RESUMEN

Intra-tumor heterogeneity (ITH) is a mechanism of therapeutic resistance and therefore an important clinical challenge. However, the extent, origin, and drivers of ITH across cancer types are poorly understood. To address this, we extensively characterize ITH across whole-genome sequences of 2,658 cancer samples spanning 38 cancer types. Nearly all informative samples (95.1%) contain evidence of distinct subclonal expansions with frequent branching relationships between subclones. We observe positive selection of subclonal driver mutations across most cancer types and identify cancer type-specific subclonal patterns of driver gene mutations, fusions, structural variants, and copy number alterations as well as dynamic changes in mutational processes between subclonal expansions. Our results underline the importance of ITH and its drivers in tumor evolution and provide a pan-cancer resource of comprehensively annotated subclonal events from whole-genome sequencing data.


Asunto(s)
Heterogeneidad Genética , Neoplasias/genética , Variaciones en el Número de Copia de ADN , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Bases de Datos Genéticas , Resistencia a Antineoplásicos/genética , Humanos , Neoplasias/patología , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
2.
Cell ; 155(2): 462-77, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120142

RESUMEN

We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Neoplasias Encefálicas/metabolismo , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma/metabolismo , Humanos , Masculino , Mutación , Proteoma/análisis , Transducción de Señal
3.
Am J Hum Genet ; 110(8): 1249-1265, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37506692

RESUMEN

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples. Modifications to our academic clinical laboratory including efficient test design, robotics, and a streamlined analysis approach increased our ability to test more than 1,000 samples per month for HOP using only one dedicated HOP laboratory technologist. Additionally, enrollment using a HIPAA-compliant smartphone app and sample collection using mouthwash increased efficiency and reduced cost. Here, we present our experience three years into HOP and discuss the lessons learned, including our successes, challenges, opportunities, and future directions, as well as the genetic screening results for the first 13,670 participants tested. Overall, we have identified 730 pathogenic/likely pathogenic variants in 710 participants in 24 of the 32 genes on the panel. The carrier rate for pathogenic/likely pathogenic variants in the inherited cancer genes on the panel for an unselected population was 5.0% and for familial hypercholesterolemia was 0.3%. Our laboratory experience described here may provide a useful model for population screening projects in other states.


Asunto(s)
Hiperlipoproteinemia Tipo II , Neoplasias , Humanos , Oregon/epidemiología , Detección Precoz del Cáncer , Pruebas Genéticas , Hiperlipoproteinemia Tipo II/diagnóstico , Hiperlipoproteinemia Tipo II/epidemiología , Hiperlipoproteinemia Tipo II/genética , Neoplasias/diagnóstico , Neoplasias/epidemiología , Neoplasias/genética
4.
Nature ; 578(7793): 122-128, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32025013

RESUMEN

Cancer develops through a process of somatic evolution1,2. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes3. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)4, we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer. Early oncogenesis is characterized by mutations in a constrained set of driver genes, and specific copy number gains, such as trisomy 7 in glioblastoma and isochromosome 17q in medulloblastoma. The mutational spectrum changes significantly throughout tumour evolution in 40% of samples. A nearly fourfold diversification of driver genes and increased genomic instability are features of later stages. Copy number alterations often occur in mitotic crises, and lead to simultaneous gains of chromosomal segments. Timing analyses suggest that driver mutations often precede diagnosis by many years, if not decades. Together, these results determine the evolutionary trajectories of cancer, and highlight opportunities for early cancer detection.


Asunto(s)
Evolución Molecular , Genoma Humano/genética , Neoplasias/genética , Reparación del ADN/genética , Dosificación de Gen , Genes Supresores de Tumor , Variación Genética , Humanos , Mutagénesis Insercional/genética
6.
BMC Genomics ; 24(1): 349, 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365517

RESUMEN

T cell receptor repertoires can be profiled using next generation sequencing (NGS) to measure and monitor adaptive dynamical changes in response to disease and other perturbations. Genomic DNA-based bulk sequencing is cost-effective but necessitates multiplex target amplification using multiple primer pairs with highly variable amplification efficiencies. Here, we utilize an equimolar primer mixture and propose a single statistical normalization step that efficiently corrects for amplification bias post sequencing. Using samples analyzed by both our open protocol and a commercial solution, we show high concordance between bulk clonality metrics. This approach is an inexpensive and open-source alternative to commercial solutions.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Linfocitos T , Secuencia de Bases , Mapeo Cromosómico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Receptores de Antígenos de Linfocitos T alfa-beta/genética
7.
RNA ; 26(6): 724-738, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144193

RESUMEN

DNA replication occurs on mammalian chromosomes in a cell-type distinctive temporal order known as the replication timing program. We previously found that disruption of the noncanonical lncRNA genes ASAR6 and ASAR15 results in delayed replication timing and delayed mitotic chromosome condensation of human chromosomes 6 and 15, respectively. ASAR6 and ASAR15 display random monoallelic expression and display asynchronous replication between alleles that is coordinated with other random monoallelic genes on their respective chromosomes. Disruption of the expressed allele, but not the silent allele, of ASAR6 leads to delayed replication, activation of the previously silent alleles of linked monoallelic genes, and structural instability of human chromosome 6. In this report, we describe a second lncRNA gene (ASAR6-141) on human chromosome 6 that when disrupted results in delayed replication timing in cisASAR6-141 is subject to random monoallelic expression and asynchronous replication and is expressed from the opposite chromosome 6 homolog as ASAR6 ASAR6-141 RNA, like ASAR6 and ASAR15 RNAs, contains a high L1 content and remains associated with the chromosome territory where it is transcribed. Three classes of cis-acting elements control proper chromosome function in mammals: origins of replication, centromeres, and telomeres, which are responsible for replication, segregation, and stability of all chromosomes. Our work supports a fourth type of essential chromosomal element, the "Inactivation/Stability Center," which expresses ASAR lncRNAs responsible for proper replication timing, monoallelic expression, and structural stability of each chromosome.


Asunto(s)
Cromosomas Humanos Par 6 , Momento de Replicación del ADN , ARN Largo no Codificante/genética , Alelos , Expresión Génica , Humanos , ARN Largo no Codificante/metabolismo
8.
Mod Pathol ; 33(6): 1193-1206, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31911616

RESUMEN

Immature teratoma is a subtype of malignant germ cell tumor of the ovary that occurs most commonly in the first three decades of life, frequently with bilateral ovarian disease. Despite being the second most common malignant germ cell tumor of the ovary, little is known about its genetic underpinnings. Here we performed multiregion whole-exome sequencing to interrogate the genetic zygosity, clonal relationship, DNA copy number, and mutational status of 52 pathologically distinct tumor components from ten females with ovarian immature teratomas, with bilateral tumors present in five cases and peritoneal dissemination in seven cases. We found that ovarian immature teratomas are genetically characterized by 2N near-diploid genomes with extensive loss of heterozygosity and an absence of genes harboring recurrent somatic mutations or known oncogenic variants. All components within a single ovarian tumor (immature teratoma, mature teratoma with different histologic patterns of differentiation, and yolk sac tumor) were found to harbor an identical pattern of loss of heterozygosity across the genome, indicating a shared clonal origin. In contrast, the four analyzed bilateral teratomas showed distinct patterns of zygosity changes in the right versus left sided tumors, indicating independent clonal origins. All disseminated teratoma components within the peritoneum (including gliomatosis peritonei) shared a clonal pattern of loss of heterozygosity with either the right or left primary ovarian tumor. The observed genomic loss of heterozygosity patterns indicate that diverse meiotic errors contribute to the formation of ovarian immature teratomas, with 11 out of the 15 genetically distinct clones determined to result from nondisjunction errors during meiosis I or II. Overall, these findings suggest that copy-neutral loss of heterozygosity resulting from meiotic abnormalities may be sufficient to generate ovarian immature teratomas from germ cells.


Asunto(s)
Desequilibrio Alélico , Mutación , Neoplasias Ováricas/genética , Teratoma/genética , Adolescente , Adulto , Alelos , Niño , Diploidia , Femenino , Humanos , Neoplasias Ováricas/patología , Neoplasias Ováricas/cirugía , Teratoma/patología , Teratoma/cirugía , Secuenciación del Exoma , Adulto Joven
9.
N Engl J Med ; 374(2): 135-45, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26536169

RESUMEN

BACKGROUND: Papillary renal-cell carcinoma, which accounts for 15 to 20% of renal-cell carcinomas, is a heterogeneous disease that consists of various types of renal cancer, including tumors with indolent, multifocal presentation and solitary tumors with an aggressive, highly lethal phenotype. Little is known about the genetic basis of sporadic papillary renal-cell carcinoma, and no effective forms of therapy for advanced disease exist. METHODS: We performed comprehensive molecular characterization of 161 primary papillary renal-cell carcinomas, using whole-exome sequencing, copy-number analysis, messenger RNA and microRNA sequencing, DNA-methylation analysis, and proteomic analysis. RESULTS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be different types of renal cancer characterized by specific genetic alterations, with type 2 further classified into three individual subgroups on the basis of molecular differences associated with patient survival. Type 1 tumors were associated with MET alterations, whereas type 2 tumors were characterized by CDKN2A silencing, SETD2 mutations, TFE3 fusions, and increased expression of the NRF2-antioxidant response element (ARE) pathway. A CpG island methylator phenotype (CIMP) was observed in a distinct subgroup of type 2 papillary renal-cell carcinomas that was characterized by poor survival and mutation of the gene encoding fumarate hydratase (FH). CONCLUSIONS: Type 1 and type 2 papillary renal-cell carcinomas were shown to be clinically and biologically distinct. Alterations in the MET pathway were associated with type 1, and activation of the NRF2-ARE pathway was associated with type 2; CDKN2A loss and CIMP in type 2 conveyed a poor prognosis. Furthermore, type 2 papillary renal-cell carcinoma consisted of at least three subtypes based on molecular and phenotypic features. (Funded by the National Institutes of Health.).


Asunto(s)
Carcinoma Papilar/metabolismo , Neoplasias Renales/metabolismo , Mutación , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-met/metabolismo , Carcinoma Papilar/genética , Islas de CpG/fisiología , Metilación de ADN , Humanos , Neoplasias Renales/genética , MicroARNs/química , Factor 2 Relacionado con NF-E2/genética , Fenotipo , Proteínas Proto-Oncogénicas c-met/química , Proteínas Proto-Oncogénicas c-met/genética , ARN Mensajero/química , ARN Neoplásico/química , Análisis de Secuencia de ARN , Transducción de Señal/fisiología
10.
Nat Methods ; 13(4): 310-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26901648

RESUMEN

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.


Asunto(s)
Causalidad , Redes Reguladoras de Genes , Neoplasias/genética , Mapeo de Interacción de Proteínas/métodos , Programas Informáticos , Biología de Sistemas , Algoritmos , Biología Computacional , Simulación por Computador , Perfilación de la Expresión Génica , Humanos , Modelos Biológicos , Transducción de Señal , Células Tumorales Cultivadas
11.
Mol Ther ; 26(5): 1327-1342, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29550076

RESUMEN

Direct lineage reprogramming can convert readily available cells in the body into desired cell types for cell replacement therapy. This is usually achieved through forced activation or repression of lineage-defining factors or pathways. In particular, reprogramming toward the pancreatic ß cell fate has been of great interest in the search for new diabetes therapies. It has been suggested that cells from various endodermal lineages can be converted to ß-like cells. However, it is unclear how closely induced cells resemble endogenous pancreatic ß cells and whether different cell types have the same reprogramming potential. Here, we report in vivo reprogramming of pancreatic ductal cells through intra-ductal delivery of an adenoviral vector expressing the transcription factors Pdx1, Neurog3, and Mafa. Induced ß-like cells are mono-hormonal, express genes essential for ß cell function, and correct hyperglycemia in both chemically and genetically induced diabetes models. Compared with intrahepatic ducts and hepatocytes treated with the same vector, pancreatic ducts demonstrated more rapid activation of ß cell transcripts and repression of donor cell markers. This approach could be readily adapted to humans through a commonly performed procedure, endoscopic retrograde cholangiopancreatography (ERCP), and provides potential for cell replacement therapy in type 1 diabetes patients.


Asunto(s)
Reprogramación Celular , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Conductos Pancreáticos/citología , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenoviridae/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores , Reprogramación Celular/genética , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Vectores Genéticos/genética , Hepatocitos/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(29): 8272-7, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27307436

RESUMEN

Infiltration of T cells in breast tumors correlates with improved survival of patients with breast cancer, despite relatively few mutations in these tumors. To determine if T-cell specificity can be harnessed to augment immunotherapies of breast cancer, we sought to identify the alpha-beta paired T-cell receptors (TCRs) of tumor-infiltrating lymphocytes shared between multiple patients. Because TCRs function as heterodimeric proteins, we used an emulsion-based RT-PCR assay to link and amplify TCR pairs. Using this assay on engineered T-cell hybridomas, we observed ∼85% accurate pairing fidelity, although TCR recovery frequency varied. When we applied this technique to patient samples, we found that for any given TCR pair, the dominant alpha- or beta-binding partner comprised ∼90% of the total binding partners. Analysis of TCR sequences from primary tumors showed about fourfold more overlap in tumor-involved relative to tumor-free sentinel lymph nodes. Additionally, comparison of sequences from both tumors of a patient with bilateral breast cancer showed 10% overlap. Finally, we identified a panel of unique TCRs shared between patients' tumors and peripheral blood that were not found in the peripheral blood of controls. These TCRs encoded a range of V, J, and complementarity determining region 3 (CDR3) sequences on the alpha-chain, and displayed restricted V-beta use. The nucleotides encoding these shared TCR CDR3s varied, suggesting immune selection of this response. Harnessing these T cells may provide practical strategies to improve the shared antigen-specific response to breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/metabolismo , Secuencia de Bases , Línea Celular , Emulsiones , Femenino , Humanos , Reacción en Cadena de la Polimerasa/métodos
13.
Proc Natl Acad Sci U S A ; 113(43): E6600-E6609, 2016 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-27791031

RESUMEN

Forkhead box protein A1 (FOXA1) is a pioneer factor of estrogen receptor α (ER)-chromatin binding and function, yet its aberration in endocrine-resistant (Endo-R) breast cancer is unknown. Here, we report preclinical evidence for a role of FOXA1 in Endo-R breast cancer as well as evidence for its clinical significance. FOXA1 is gene-amplified and/or overexpressed in Endo-R derivatives of several breast cancer cell line models. Induced FOXA1 triggers oncogenic gene signatures and proteomic profiles highly associated with endocrine resistance. Integrated omics data reveal IL8 as one of the most perturbed genes regulated by FOXA1 and ER transcriptional reprogramming in Endo-R cells. IL-8 knockdown inhibits tamoxifen-resistant cell growth and invasion and partially attenuates the effect of overexpressed FOXA1. Our study highlights a role of FOXA1 via IL-8 signaling as a potential therapeutic target in FOXA1-overexpressing ER-positive tumors.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica , Factor Nuclear 3-alfa del Hepatocito/genética , Interleucina-8/genética , Transcriptoma , Antineoplásicos Hormonales/uso terapéutico , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptor alfa de Estrógeno/metabolismo , Femenino , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Humanos , Interleucina-8/antagonistas & inhibidores , Interleucina-8/metabolismo , Pronóstico , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Tamoxifeno/uso terapéutico
14.
Proc Natl Acad Sci U S A ; 112(35): 10995-1000, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26286987

RESUMEN

Melanoma is difficult to treat once it becomes metastatic. However, the precise ancestral relationship between primary tumors and their metastases is not well understood. We performed whole-exome sequencing of primary melanomas and multiple matched metastases from eight patients to elucidate their phylogenetic relationships. In six of eight patients, we found that genetically distinct cell populations in the primary tumor metastasized in parallel to different anatomic sites, rather than sequentially from one site to the next. In five of these six patients, the metastasizing cells had themselves arisen from a common parental subpopulation in the primary, indicating that the ability to establish metastases is a late-evolving trait. Interestingly, we discovered that individual metastases were sometimes founded by multiple cell populations of the primary that were genetically distinct. Such establishment of metastases by multiple tumor subpopulations could help explain why identical resistance variants are identified in different sites after initial response to systemic therapy. One primary tumor harbored two subclones with different oncogenic mutations in CTNNB1, which were both propagated to the same metastasis, raising the possibility that activation of wingless-type mouse mammary tumor virus integration site (WNT) signaling may be involved, as has been suggested by experimental models.


Asunto(s)
Melanoma/patología , Filogenia , Humanos , Melanoma/genética , Metástasis de la Neoplasia
16.
Biochem Biophys Res Commun ; 482(4): 1271-1277, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27939881

RESUMEN

ASPP2 is a tumor suppressor that works, at least in part, through enhancing p53-dependent apoptosis. We now describe a new ASPP2 isoform, ΔN-ASPP2, generated from an internal transcription start site that encodes an N-terminally truncated protein missing a predicted 254 amino acids. ΔN-ASPP2 suppresses p53 target gene transactivation, promoter occupancy, and endogenous p53 target gene expression in response to DNA damage. Moreover, ΔN-ASPP2 promotes progression through the cell cycle, as well as resistance to genotoxic stress-induced growth inhibition and apoptosis. Additionally, we found that ΔN-ASPP2 expression is increased in human breast tumors as compared to adjacent normal breast tissue; in contrast, ASPP2 is suppressed in the majority of these breast tumors. Together, our results provide insight into how this new ASPP2 isoform may play a role in regulating the ASPP2-p53 axis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/química , Animales , Apoptosis , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Clonación Molecular , Daño del ADN , Femenino , Humanos , Ratones , Dominios Proteicos , Activación Transcripcional , Proteína p53 Supresora de Tumor/genética
17.
Breast Cancer Res ; 18(1): 70, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27368372

RESUMEN

BACKGROUND: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors. METHODS: We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignant and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA). RESULTS: High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to inhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup. CONCLUSIONS: We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.


Asunto(s)
Neoplasias de la Mama/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Mitosis/efectos de los fármacos , Aurora Quinasas/antagonistas & inhibidores , Aurora Quinasas/genética , Aurora Quinasas/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Femenino , Amplificación de Genes , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Mitosis/genética , Pronóstico , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , Bibliotecas de Moléculas Pequeñas/farmacología , Resultado del Tratamiento , Quinasa Tipo Polo 1
18.
BMC Genomics ; 16 Suppl 13: S1, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26693644

RESUMEN

BACKGROUND: The assessment of cell-free circulating DNA fragments, also known as a "liquid biopsy" of the patient's plasma, is an important source for the discovery and subsequent non-invasive monitoring of cancer and other pathological conditions. Although the nucleosome-guided fragmentation patterns of cell-free DNA (cfDNA) have not yet been studied in detail, non-random representation of cfDNA sequencies may reflect chromatin features in the tissue of origin at gene-regulation level. RESULTS: In this study, we investigated the association between epigenetic landscapes of human tissues evident in the patterns of cfDNA in plasma by deep sequencing of human cfDNA samples. We have demonstrated that baseline characteristics of cfDNA fragmentation pattern are in concordance with the ones corresponding to cell lines-derived. To identify the loci differentially represented in cfDNA fragment, we mapped the transcription start sites within the sequenced cfDNA fragments and tested for association of these genomic coordinates with the relative strength and the patterns of gene expressions. Preselected sets of house-keeping and tissue specific genes were used as models for actively expressed and silenced genes. Developed measure of gene regulation was able to differentiate these two sets based on sequencing coverage near gene transcription start site. CONCLUSION: Experimental outcomes suggest that cfDNA retains characteristics previously noted in genome-wide analysis of chromatin structure, in particular, in MNase-seq assays. Thus far the analysis of the DNA fragmentation pattern may aid further developing of cfDNA based biomarkers for a variety of human conditions.


Asunto(s)
Fragmentación del ADN , ADN/genética , ADN/metabolismo , Epigénesis Genética , Nucleosomas/metabolismo , Apoptosis , ADN/sangre , ADN/química , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Nucleosomas/química , Nucleosomas/genética , Análisis de Secuencia de ADN
19.
Int J Comput Vis ; 113(1): 3-18, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-27721567

RESUMEN

Image-based classification of histology sections, in terms of distinct components (e.g., tumor, stroma, normal), provides a series of indices for histology composition (e.g., the percentage of each distinct components in histology sections), and enables the study of nuclear properties within each component. Furthermore, the study of these indices, constructed from each whole slide image in a large cohort, has the potential to provide predictive models of clinical outcome. For example, correlations can be established between the constructed indices and the patients' survival information at cohort level, which is a fundamental step towards personalized medicine. However, performance of the existing techniques is hindered as a result of large technical variations (e.g., variations of color/textures in tissue images due to non-standard experimental protocols) and biological heterogeneities (e.g., cell type, cell state) that are always present in a large cohort. We propose a system that automatically learns a series of dictionary elements for representing the underlying spatial distribution using stacked predictive sparse decomposition. The learned representation is then fed into the spatial pyramid matching framework with a linear support vector machine classifier. The system has been evaluated for classification of distinct histological components for two cohorts of tumor types. Throughput has been increased by using of graphical processing unit (GPU), and evaluation indicates a superior performance results, compared with previous research.

20.
Nucleic Acids Res ; 41(18): 8464-74, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23887935

RESUMEN

Aberrant DNA methylation of CpG islands, CpG island shores and first exons is known to play a key role in the altered gene expression patterns in all human cancers. To date, a systematic study on the effect of DNA methylation on gene expression using high resolution data has not been reported. In this study, we conducted an integrated analysis of MethylCap-sequencing data and Affymetrix gene expression microarray data for 30 breast cancer cell lines representing different breast tumor phenotypes. As well-developed methods for the integrated analysis do not currently exist, we created a series of four different analysis methods. On the computational side, our goal is to develop methylome data analysis protocols for the integrated analysis of DNA methylation and gene expression data on the genome scale. On the cancer biology side, we present comprehensive genome-wide methylome analysis results for differentially methylated regions and their potential effect on gene expression in 30 breast cancer cell lines representing three molecular phenotypes, luminal, basal A and basal B. Our integrated analysis demonstrates that methylation status of different genomic regions may play a key role in establishing transcriptional patterns in molecular subtypes of human breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Sitios de Unión , Neoplasias de la Mama/clasificación , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Perfilación de la Expresión Génica , Genómica/métodos , Humanos , Fenotipo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA