Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Molecules ; 28(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36677803

RESUMEN

Rice husk (RH) in the rice industry is often air-burnt to obtain energy in the form of heat and RH ash (RHA) residue. In this work, RHA was applied as a starting material to obtain silica-supported carbon nanomaterials, resulting in a new reuse of a globally produced industrial waste product, in a circular economy approach. The preparation involves ultrasound-assisted one-pot oxidation with a sulfonitric mixture followed by wet oven treatment in a closed vessel. A study of oxidation times and RHA amount/acid volume ratio led to a solid material (nC-RHA@SiO2) and a solution containing silica-supported carbon quantum dots (CQD-RHA@SiO2). TEM analyses evidenced that nC-RHA@SiO2 consists of nanoparticle aggregates, while CQD-RHA@SiO2 are carbon-coated spherical silica nanoparticles. The presence of oxygenated carbon functional groups, highlighted by XPS analyses, makes these materials suitable for a wide range of analytical applications. As the main product, nC-RHA@SiO2 was tested for its affinity towards steroid hormones. Solid-phase extractions were carried out on environmental waters for the determination of target analytes at different concentrations (10, 50, and 200 ng L−1), achieving quantitative adsorption and recoveries (RSD < 20%, n = 3). The method was successfully employed for monitoring lake, river, and wastewater treatment plant water samples collected in Northern Italy.

2.
Molecules ; 27(19)2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36235134

RESUMEN

In this work, a simple, quick and efficient analytical method for determination of human and veterinary fluoroquinolone antimicrobial residues in lettuce, cucumber and spinach is developed. The procedure entails a 6 min ultrasound-assisted extraction (UAE, 3 × 2 min) in an alkaline (2% v/v NH3) aqueous solution containing Mg2+ ions (3 × 6 mL), with no need for organic solvents. The extract is submitted to cleanup on the HLB™ cartridge and the fluoroquinolones are separated and quantified by HPLC-MS/MS in a 10 min chromatographic run, using a small amount of acetonitrile in the mobile phase. The method, entirely developed in real matrices, is validated according to the updated analytical guidelines and provided suitable recoveries in the range of 67-116% and precision (RSD ≤ 20%, n = 3) at different concentrations (15, 70 and 150 ng g-1), with method quantification limits of 2-10 ng g-1. Fluoroquinolones were detected and quantified at concentrations from few to hundreds of nanograms per gram in vegetables from supermarkets, demonstrating the applicability of the method for monitoring residues of these pharmaceuticals.


Asunto(s)
Frutas , Verduras , Acetonitrilos/análisis , Antibacterianos/análisis , Cromatografía Líquida de Alta Presión/métodos , Fluoroquinolonas/análisis , Frutas/química , Humanos , Preparaciones Farmacéuticas/análisis , Extractos Vegetales/análisis , Extracción en Fase Sólida/métodos , Solventes/química , Espectrometría de Masas en Tándem/métodos , Verduras/química
3.
Molecules ; 26(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916782

RESUMEN

A micron-sized sorbent, Magn-Humic, has been prepared by humic acids pyrolysis onto silica-coated magnetite. The material was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA), and Brunauer, Emmett, and Teller (BET) surface area measurements and applied for simultaneous magnetic solid-phase extraction (MSPE) of glucocorticoids, estrogens, progestogens, and androgens at ng mL-1 levels from human plasma followed by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Due to the low affinity for proteins, steroids extraction was done with no need for proteins precipitation/centrifugation. As highlighted by a design of experiments, MSPE was performed on 250 µL plasma (after 1:4 dilution) by 50 mg Magn-Humic (reusable for eight extractions) achieving quantitative recovery and satisfying clean-up. This was improved by washing (2 mL 2% v/v formic acid) prior to analytes elution by 0.5 mL 1:1 v/v methanol-acetonitrile followed by 0.5 mL methanol; eluate reduction to 0.25 mL compensated the initial sample dilution. The accuracy was assessed in certified blank fetal bovine serum and in human plasma, gaining satisfactory recovery in the range 65-122%, detection limits in the range 0.02-0.3 ng mL-1 (0.8 ng mL-1 for 17-ß-estradiol) and suitable inter-day precision (relative standard deviation (RSD) <14%, n = 3). The method was evaluated in terms of selectivity, sensitivity, matrix-effect, instrumental carry-over, and it was applied to human plasma samples.


Asunto(s)
Carbono/química , Fenómenos Magnéticos , Plasma/química , Microextracción en Fase Sólida , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Humanos , Sustancias Húmicas/análisis , Albúmina Sérica Bovina/química
4.
Angew Chem Int Ed Engl ; 60(7): 3611-3618, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33047446

RESUMEN

Water-stable metal halide perovskites could foster tremendous progresses in several research fields where their superior optical properties can make differences. In this work we report clear evidence of water stability in a lead-free metal halide perovskite, namely DMASnBr3 , obtained by means of diffraction, optical and X-ray photoelectron spectroscopy. Such unprecedented water-stability has been applied to promote photocatalysis in aqueous medium, in particular by devising a novel composite material by coupling DMASnBr3 to g-C3 N4 , taking advantage from the combination of their optimal photophysical properties. The prepared composites provide an impressive hydrogen evolution rate >1700 µmol g-1 h-1 generated by the synergistic activity of the two composite costituents. DFT calculations provide insight into this enhancement deriving it from the favorable alignment of interfacial energy levels of DMASnBr3 and g-C3 N4 . The demonstration of an efficient photocatalytic activity for a composite based on lead-free metal halide perovskite in water paves the way to a new class of light-driven catalysts working in aqueous environments.

5.
Anal Bioanal Chem ; 410(29): 7635-7643, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30255326

RESUMEN

Silica-supported pyrolyzed lignin (pLG@silica) was investigated as a solid sorbent for the pre-concentration of rare earth elements (REE) from natural waters followed by inductively coupled plasma mass spectrometry (ICP-MS) analysis. The carbon-based material was easily prepared by pyrolytic treatment of lignin at 600 °C after its adsorption onto silica micro-particles. pLG@silica was characterized by scanning electron microscopy (SEM), surface area measurements (BET method), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), point of zero charge measurement, and X-ray photoelectron spectroscopy (XPS). The as-prepared material (50 mg) was tested as fixed-bed sorbent for the solid-phase extraction (SPE) of tap, river, and sea water samples spiked with REE in the 10-150 ng L-1 range, followed by ICP-MS analysis. A quantitative adsorption was observed for all REE with recoveries in the range of 72-118%. A suitable inter-day precision (RSDs 5-12%, n = 3) was obtained. Sample volumes up to 250 mL provided enrichment factors up to 100. The method detection and quantification limits (MDLs and MQLs) were in the range of 0.4-0.6 ng L-1 and 1-2 ng L-1, respectively. The batch-to-batch reproducibility was verified on four pLG@silica independent preparations. As remarkable advantages, pLG@silica proved to be of easy preparation using a waste material, inexpensive, and reusable for at least 20 SPE cycles.

6.
Anal Bioanal Chem ; 409(28): 6709-6718, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29071365

RESUMEN

This work shows a novel analytical method for the simultaneous extraction of environmental emerging contaminants as benzenesulfonamides (BSAs), benzotriazoles (BTRs), and benzothiazoles (BTs) from water samples. Pristine multi-walled carbon nanotubes (MWCNTs), not yet tested for such analytes, are here employed as the sorbent phase for dispersive solid-phase extraction (d-SPE) followed by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (HPLC-HESI-MS/MS). Quantitative sorption is gained by treating 50 mL sample with 100 mg MWCNTs (2 g L-1) in 10 min contact, both in tap and raw river water. After sorption, the analytes are quantitatively desorbed by microwaves (20 min, 160 °C, 250 W) by using 5 mL methanol-ethylacetate-acetic acid (10:70:20, v/v), according to the indications obtained by a chemometric study. The extract is reduced to small volume before analysis, thus reaching overall enrichment factors up to 400. Recovery of the entire procedure, evaluated on tap and surface water samples spiked with 0.1/0.5-50 µg L-1 of each analyte, was in the range 70-116%, with excellent inter-day precision (RSD < 7%). Selectivity and firm analyte identification were assured by MRM detection, and suitable sensitivity was obtained for determination of these pollutants in actual matrices (experimental MDLs 30-170 ng L-1). The proposed analytical method was applied to the analysis of surface water samples, containing concentrations of these contaminants ranging from 100 ng L-1 to 2 µg L-1. Pristine MWCNTs proved to be a valid alternative to other commercial sorbents, both in terms of cost and sorption capacity. Graphical abstract Determination of benzenesulfonamides, benzotriazoles, and benzothiazoles in environmental waters by dispersive multi-walled carbon nanotube extraction prior HPLC-MS.

7.
Photochem Photobiol Sci ; 13(10): 1410-9, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25051203

RESUMEN

This work presents a systematic study of cellulose (CLS) as a sacrificial biomass for photocatalytic H2 evolution from water. The idea is indeed to couple a largely available and not expensive biomass, and water, with a renewable energy like solar radiation. An aqueous CLS suspension irradiated either at 366 nm (UV-A) or under sunlight in the presence of Pt/TiO2 behaves as a H2 evolving system. The effects of irradiation time, catalyst and CLS concentrations, pH and water salinity are studied. Addition of CLS to the sample significantly improved H2 evolution from water splitting, with yields up to ten fold higher than those observed in neat water. The mechanism of the photocatalytic process relies on the TiO2-mediated CLS hydrolysis, under irradiation. The polysaccharide depolymerisation generates water-soluble species and intermediates, among them 5-hydroxymethylfurfural (HMF) was identified. These intermediates are readily oxidized following the glucose photoreforming, thus enhancing water hydrogen ion reduction to give gas-phase H2. The formation of "colored" by-products from HMF self-polymerization involves a sort of "in situ dye sensitization" that allows an effective photoreaction even under solar light. The procedure is evaluated and successfully extended on cellulosic biomasses, i.e. rice husk and alfalfa (Medicago sativa) stems, not previously investigated for this application.


Asunto(s)
Celulosa/química , Hidrógeno/química , Hidrógeno/efectos de la radiación , Procesos Fotoquímicos , Luz Solar , Agua/química , Biomasa , Catálisis/efectos de la radiación , Suspensiones
8.
Anal Bioanal Chem ; 406(15): 3657-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24652153

RESUMEN

This is the first report on the analytical application of multiwalled carbon nanotubes (MWCNTs) as solid-phase extraction (SPE) sorbents for determination in surface waters, at the nanograms per litre level, of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), the two predominant contaminants among the perfluorinated compounds detected. After the preconcentration step, the quantification was achieved by ultraperformance liquid chromatography-electrospray ionization mass spectrometry. To increase the extraction efficiency towards these amphiphilic compounds, MWCNTs were derivatized with amino-terminated alkyl chains, thus producing a mixed-mode material (MWCNT-R-NH2) combining hydrophobic affinity and anion-exchange properties. Experiments with distilled, tap and river water (pH 3) spiked at different concentrations (10, 15, 30, 100, 200 and 500 ng L(-1)) provided absolute recoveries in the range 71-102% (n = 3, relative standard deviations less than 10%). Analytes were eluted in a single fraction with 6 mL methanol (3 × 10(-4) M NaOH). The within-laboratory reproducibility of the MWCNT-R-NH2 SPE sorbent was evaluated with raw river water, and relative standard deviations less than 15% were obtained (n = 4). Preconcentration factors up to 125 (500-mL sample) made it possible to quantify PFOA and PFOS at low nanograms per litre levels in naturally contaminated river water. The method quantification limits of 10 ng L(-1) for PFOA and 15 ng L(-1) for PFOS were well below the advisory levels for drinking and surface waters. Comparison with non-derivatized MWCNTs highlighted the role of functionalization in improving the adsorption affinity towards these contaminants. MWCNT-R-NH2 maintained their extraction capability for at least eight repeated adsorption/desorption cycles.

9.
Artículo en Inglés | MEDLINE | ID: mdl-39014139

RESUMEN

The occurrence of sex steroid hormones, viz. oestrogens and progestins, in aquatic ecosystems is of global concern due to their role as endocrine disrupting chemicals, even at low concentration (µg L-1 or less). Thus, it is essential to monitor these organic pollutants to get a realistic picture of their presence and to control their contamination levels in environmental water bodies. In this respect, we have explored the use of self-prepared polymeric films as novel sorptive phase for the microextraction of 17ß-estradiol, 17α-ethinylestradiol, estrone, progesterone, medroxyprogesterone acetate and hydroxyprogesterone. The thin film microextraction procedure has been developed, evaluating different film compositions, sample volumes and elution conditions to recover the sorbed analytes. The overall method provides good reproducibility (RSD < 12%) and recoveries higher than 60%. The final method has been applied to environmental monitoring in surface waters (river and lake samples) and urban wastewater treatment plant effluents and influents from Northern Italy, to get a contamination snapshot of this highly urbanized area.

10.
Anal Chim Acta ; 1308: 342658, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38740458

RESUMEN

BACKGROUND: The environmental impact of sample preparation should be minimized through simplification of the procedures and the use of natural, renewable and/or reusable materials. In such scenario, thin-film microextraction fulfils the former criteria, as it enables few steps and miniaturization, thus small amount of extraction phase. At the same time, the use of sorbents such as biochars obtained from biomass waste is even more promoted due to their availability at low cost and increased life-cycle in a circular economy vision. However, it is not always easy to combine these criteria in sample preparation. RESULTS: A thin film microextraction was developed for the determination of steroids in aqueous samples, entailing a membrane made of cellulose triacetate and a wood-derived biochar (Nuchar®) as carbon precursor. Different characterization techniques showed the successful preparation, whereas the sorption kinetics experiments demonstrated that biochar is responsible for the extraction with the polymer acting as a smart support. After a study about membranes' composition in terms of biochar amounts (4 %, 10 %, 16 % wt) and type of synthesis set up, the ceramic 3D-mold was selected, achieving reproducible and ready-to-use membranes with composition fixed as 10 %. Different elution conditions, viz. type and time of agitation, type, composition and volume of eluent, were evaluated. The final microextraction followed by HPLC-MS/MS quantification was successfully validated in river and wastewater treatment plant effluent samples in terms of accuracy (R% 64-123 %, RSD<19 % in river; R% 61-118 %, RSD <18 % in effluent, n = 4), sensitivity (MQLs 0.2-8.5 ng L-1) and robustness. SIGNIFICANCE: This novel biochar-based polymeric film proved to be a valid and sustainable sorbent, in terms of extraction capability, ease of preparation and greenness. By comparison with literature and the greenness evaluation with the most recent metric tools, this method expands the potential applicability of the thin-film microextraction and opens up innovative scenarios for sustainable procedures entailing the use of biochars entrapped in bio-polymers.


Asunto(s)
Carbón Orgánico , Polímeros , Aguas Residuales , Contaminantes Químicos del Agua , Carbón Orgánico/química , Aguas Residuales/análisis , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación , Polímeros/química , Adsorción , Esteroides/análisis , Esteroides/química , Esteroides/aislamiento & purificación , Microextracción en Fase Sólida/métodos
11.
Analyst ; 138(13): 3778-85, 2013 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-23678482

RESUMEN

Multi-walled carbon nanotubes (MWCNTs) were grafted for the first time by γ-radiation onto silica microspheres in the presence of polybutadiene (PB) as the linking agent, obtaining a novel hybrid material with chromatographic properties, with an alternative approach to the existing procedures. The synthesis involves the one-pot γ-radiation-induced grafting of MWCNTs onto silica microspheres in the presence of PB as a linking agent. PB also serves as a coating layer of the silica particles, to which MWCNTs are anchored through stable chemical bonds formed via radical chain reaction with the polymer. The product (MWCNT-PB-modified silica) resulted in MWCNT bundles interlaying the silica particles which acted as a support and as a spacer. This new material highlights the unquestionable properties of CNTs also when grafted in a composite, thus allowing the disposition of a more robust material whose properties are still related to the nanotube structure. The grafting was confirmed by Raman spectroscopy. The surface area, determined by BET isotherms, resulted in 132 m(2) g(-1), about 34% lower than that of pure silica, pointing to the cross-linking effect of PB in the silica matrix. The evaluation of MWCNT-PB-modified silica as a LC stationary phase was performed by separation of aromatics, with satisfactory resolution and reproducibility, while structural selectivity was proved by isomer separation. A good resolution was obtained also for acid/basic compounds as barbiturates. A comparison with a commercial C18 sorbent highlighted the advantage in using the CNT column for separating aromatic hydrocarbons. Control experiments on the PB-coated silica column proved the key role of MWCNTs in the chromatographic performance.

12.
J Chromatogr A ; 1694: 463900, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36870254

RESUMEN

An analytical method for multiclass determination of steroid hormones in compost has been developed to fill the lack of methods for steroid residuals monitoring in this waste-derived product, increasingly produced and recycled in the circular-economy approach. The procedure simply entails an ultrasound-assisted extraction (UAE) on 300 mg compost by 3 × 2.5 mL methanol × 5 min sonication steps followed by a quick clean-up by solid-phase extraction (SPE) on the silica-based Supelclean™ LC-NH2 that avoids use of organic solvents. The clean extract is analysed by HPLC-MS/MS achieving firm identification and quantitation of the 16 steroids, i.e., glucocorticoids, progestins, androgens, oestrogens. The analytical figures of merits were assessed, viz. selectivity, sensitivity, linearity, matrix effect, trueness, precision, carry-over and robustness, in line with updated guidelines. Recovery was investigated in the concentration range 15-800 ng g-1, and at the quality control levels (15, 50, 200 and 400 ng g-1) was in the range 60-120%, with inter-day precision RSDs < 20% (n = 3). The experimental quantification limit was 15 ng g-1 for all the hormones. The method was applied to analysis of different compost samples proving to be functional to environmental monitoring.


Asunto(s)
Compostaje , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Hormonas/análisis , Esteroides/análisis , Extracción en Fase Sólida/métodos
13.
Nanomaterials (Basel) ; 13(2)2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36678018

RESUMEN

Heterojunctions based on metal halide perovskites (MHPs) are promising systems for the photocatalytic hydrogen evolution reaction (HER). In this work, we coupled Cs3Bi2Br9 nanocrystals (NCs), obtained by wet ball milling synthesis, with g-C3N4 nanosheets (NSs), produced by thermal oxidation of bulk g-C3N4, in air. These methods are reproducible, inexpensive and easy to scale up. Heterojunctions with different loadings of Cs3Bi2Br9 NCs were fully characterised and tested for the HER. A relevant improvement of H2 production with respect to pristine carbon nitride was achieved at low NCs levels reaching values up to about 4600 µmol g-1 h-1. This work aims to provide insights into the synthesis of inexpensive and high-performing heterojunctions using MHP for photocatalytic applications.

14.
Artículo en Inglés | MEDLINE | ID: mdl-36981793

RESUMEN

Polymers via high internal phase emulsion (polyHIPEs) were molecularly imprinted with Irbesartan, an antihypertensive drug belonging to the class of angiotensin II receptor antagonists (sartan drugs), chosen for the proof-of-concept extraction of hazardous emerging contaminants from water. Different analyte-functional monomer molar ratios (1:100, 1:30 and 1:15) were investigated, and the MIP polyHIPEs have been characterized, parallel to the not imprinted polymer (NIP), by batch sorption experiments. The material with the highest template-functional monomer ratio was the best for Irbesartan removal, showing a sorption capacity fivefold higher than the NIP. Regarding the adsorption kinetics, the analyte-sorbent equilibrium was reached after about 3 h, and the film diffusion model best fitted the kinetic profile. Selectivity was further demonstrated by testing Losartan, another sartan drug, observing a fourfold lower sorption capacity, but still higher than that of NIP. The polymers were also synthesized in cartridges for solid-phase extraction (SPE), which was helpful for evaluating the breakthrough curves and performing pre-concentrations. These have been done in tap and river water samples (100-250 mL, 15-500 µg L-1 Irbesartan), obtaining quantitative sorption/desorption on the MIP-polyHIPE (RSD < 14%, n = 3). The NIP provided a recovery of just around 30%, evidence of partial uptake of the target from water.


Asunto(s)
Impresión Molecular , Cromatografía Líquida de Alta Presión , Antagonistas de Receptores de Angiotensina , Bloqueadores del Receptor Tipo 2 de Angiotensina II , Irbesartán , Bloqueadores del Receptor Tipo 1 de Angiotensina II , Agua/química , Polímeros/química , Extracción en Fase Sólida , Adsorción
15.
Cell Rep Phys Sci ; 4(1): 101214, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292086

RESUMEN

There is increasing interest in the role of metal halide perovskites for heterogeneous catalysis. Here, we report a Ge-based 2D perovskite material that shows intrinsic water stability realized through organic cation engineering. Incorporating 4-phenylbenzilammonium (PhBz) we demonstrate, by means of extended experimental and computational results, that PhBz2GeBr4 and PhBz2GeI4 can achieve relevant air and water stability. The creation of composites embedding graphitic carbon nitride (g-C3N4) allows a proof of concept for light-induced hydrogen evolution in an aqueous environment by 2D Ge-based perovskites thanks to the effective charge transfer at the heterojunction between the two semiconductors.

16.
Anal Biochem ; 426(2): 142-6, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22542976

RESUMEN

This article presents the first results demonstrating that total silicon trace concentration in human ventricular whole blood may be used as a further marker in the diagnosis of drowning. The difference in silicon content between the left and right ventricles was significantly higher for drowning cases than that from individuals who had not drowned. These findings were in full agreement with autoptic responses, supporting silicon as a marker of freshwater drowning. The procedure entails an alkaline microwave-assisted digestion using tetramethylammonium hydroxide (TMAH) in the presence of H(2)O(2) followed by dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) detection, whose accuracy was obtained for Seronorm whole blood reference material. Satisfactory recoveries (91-98%) were gained on whole ventricular blood, with a silicon content lower than the method detection limit (MDL), spiked at 5 to 7µgg(-1) with materials consistent with drowning media constituents, that is, freshwater plankton (CRM [certified reference material] 414), silicon dioxide, diatomaceous earth powder, and a silicon standard solution. Good within-lab reproducibility (4-10%) and sensitivity (MDL=0.46µgg(-1)) were achieved as well. The procedure was applied to blood samples from 18 different real cases of death.


Asunto(s)
Ahogamiento/diagnóstico , Ventrículos Cardíacos/química , Espectrometría de Masas , Silicio/sangre , Biomarcadores/sangre , Humanos , Peróxido de Hidrógeno/química , Compuestos de Amonio Cuaternario/química , Dióxido de Silicio/química
17.
Anal Bioanal Chem ; 403(4): 1157-65, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22234403

RESUMEN

Amino-terminated alkyl MWCNTs (MWCNTs-R-NH(2)), synthesized by chemical modification of the nanotube skeleton by nucleophilic substitution with 2,2'-(ethylenedioxy)diethylamine, were successfully used as stationary phases for gas chromatographic separation of esters and chloroaromatics. The presence of alkyl chains with polar embedded groups made the functionalized MWCNTs (f-MWCNTs) a mixed-mode GC separation material able to interact in different ways with the analytes. Compared with non-functionalized MWCNTs (nf-MWCNTs), MWCNTs-R-NH(2) had higher selectivity, enhanced resolution, and optimum retention behaviour, and they were proved to perform better than the commercial stationary phase Porapak QS (PQS), claimed to be suitable for similar applications. The so-prepared stationary phase was used for analysis of a synthetic mixture containing different classes of analytes, viz. esters, ketones, alcohols, alkanes, and aromatic hydrocarbons, and finally used for investigation of similar real matrices. In particular, the constituents of a commercial paint thinner were determined by direct injection of the sample, with good reproducibility (inter-day precision RSDs from 5 to 19%). Two unknown samples of commercial white spirit were also analysed for determination of the aromatic hydrocarbon content, and their composition was profiled on the basis of the different compounds identified.

18.
Anal Bioanal Chem ; 404(5): 1565-9, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22814972

RESUMEN

Here we describe the extraction from soil of the major photo-transformation products (PTPs) of enrofloxacin (ENR) and danofloxacin (DAN), two fluoroquinolones (FQs) widely used in veterinary medicine and of growing environmental concern, because their PTPs have been shown to retain high antibacterial activity. The microwave-assisted extraction (MAE) technique developed previously for determination of FQs, and based on use of an alkaline aqueous solution of Mg(2+) as a complexing agent for the analytes, was applied to agricultural soil samples fortified with different amounts of the PTPs and residues of the parent compounds (53-1000 ng g(-1) for ENR, 24-148 ng g(-1) for DAN). The PTPs, obtained by irradiation of thin layers of the two drugs, were, after extraction, separated and quantified by HPLC-FD. Good recovery (70-130%) and precision (RSDs 1-6% for repeatability and 9-22% for reproducibility) were obtained by use of the overall analytical procedure. The method was applied for the first time to study the in-soil lifecycle of ENR and DAN PTPs, generated in the matrix by irradiation under natural sunlight, at environmentally significant concentrations. Results indicated that soil-adsorbed FQ PTPs are themselves liable to photodegradation and have lifetimes comparable with those of parent compounds.


Asunto(s)
Antibacterianos/aislamiento & purificación , Fluoroquinolonas/aislamiento & purificación , Microondas , Contaminantes del Suelo/aislamiento & purificación , Suelo/análisis , Antibacterianos/química , Cromatografía Líquida de Alta Presión/métodos , Enrofloxacina , Fluoroquinolonas/química , Fotólisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Contaminantes del Suelo/química
19.
J Pharm Biomed Anal ; 207: 114391, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34624819

RESUMEN

This paper deals with the preparation of new composites between polymerized/crosslinked high internal phase emulsions (polyHIPEs) and carbon nanotubes (CNTs), specifically designed for pharmaceutical analytical applications. While the composition of the polyHIPEs was maintained constant, the amount of CNTs was varied from 0.5% to 1% w/v. As proof-of-concept, the materials were tested for solid-phase extraction. Three drugs with different physical-chemical properties, namely 17ß-estradiol (E2), Naproxen (NPX), and Oxprenolol (OXP) were selected as probes to investigate the adsorption/elution conditions on/from the CNT/polyHIPE composites for future analytical applications. The sorption and desorption behavior of the three analytes was studied at different pH values. The experimental results are coherent with chemistry of the support and the physical-chemical characteristics of the considered analytes. The incorporation of CNTs into the polyHIPEs network strongly influences the sorption properties of these materials.


Asunto(s)
Nanotubos de Carbono , Adsorción , Emulsiones , Naproxeno , Extracción en Fase Sólida
20.
Talanta ; 221: 121496, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33076100

RESUMEN

Aim and novelty of this work are the development of a simple and straightforward analytical procedure for multiclass determination of steroid hormones in human plasma. The method entails a single pre-treatment step based on solid-phase extraction using a recently proposed sorbent phase (HA-C@silica). This is easily prepared with good reproducibility via pyrolysis of humic acids onto silica, and not yet tested in biological fluids. It proved to be advantageous as it showed poor affinity for the protein matrix constituents while quantitatively extracting and pre-concentrating the target analytes. Indeed, as demonstrated in bovine serum albumin solution, up to ca. 90% protein is not retained by the sorbent, similarly to the behaviour of restricted access carbon nanotubes, tested for comparison. The high albumin exclusion allowed a satisfactory clean-up avoiding protein precipitation and centrifugation before extraction. The extraction procedure, optimized by a chemometric approach (23 experimental design) in BSA solution, provided quantitative recovery (76-119%, n = 3) for all steroids working with 1:8-diluted plasma (2 mL) and 100 mg HA-C@silica. Before analytes elution by 1 mL methanol-acetonitrile (1:1, v/v), selective washings (2% v/v formic acid and 30% v/v methanol) were applied to remove the small fraction of retained proteins, thus obtaining very clean SPE extracts to be analyzed by HPLC-ESI-MS/MS. This allowed identification/quantification (MRM mode) at few ng mL-1 by a single chromatographic run. The procedure was verified in blank-certified foetal bovine serum (spikes 10-100 ng mL-1), obtaining good recovery and suitable inter-day precision (RSDs < 15%, n = 3). The analytical method, applied to real plasma samples analysis, is appealing in terms of sample throughput, extraction efficiency and clean-up.


Asunto(s)
Nanotubos de Carbono , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Humanos , Reproducibilidad de los Resultados , Proyectos de Investigación , Dióxido de Silicio , Extracción en Fase Sólida , Esteroides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA