Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Physiol Rev ; 99(4): 1877-2013, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31460832

RESUMEN

The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.


Asunto(s)
Bacterias/metabolismo , Encefalopatías/microbiología , Encéfalo/microbiología , Microbioma Gastrointestinal , Intestinos/microbiología , Factores de Edad , Envejecimiento , Animales , Bacterias/inmunología , Bacterias/patogenicidad , Conducta , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Encefalopatías/psicología , Disbiosis , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/microbiología , Sistema Nervioso Entérico/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Intestinos/inmunología , Neuroinmunomodulación , Plasticidad Neuronal , Factores de Riesgo
2.
Front Neuroendocrinol ; 56: 100815, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805290

RESUMEN

Sex is a critical factor in the diagnosis and development of a number of mental health disorders including autism, schizophrenia, depression, anxiety, Parkinson's disease, multiple sclerosis, anorexia nervosa and others; likely due to differences in sex steroid hormones and genetics. Recent evidence suggests that sex can also influence the complexity and diversity of microbes that we harbour in our gut; and reciprocally that our gut microbes can directly and indirectly influence sex steroid hormones and central gene activation. There is a growing emphasis on the role of gastrointestinal microbiota in the maintenance of mental health and their role in the pathogenesis of disease. In this review, we introduce mechanisms by which gastrointestinal microbiota are thought to mediate positive health benefits along the gut-brain axis, we report how they may be modulated by sex, the role they play in sex steroid hormone regulation, and their sex-specific effects in various disorders relating to mental health.


Asunto(s)
Encéfalo/fisiología , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/fisiología , Caracteres Sexuales , Animales , Bacterias/clasificación , Bacterias/metabolismo , Femenino , Hormonas Esteroides Gonadales/fisiología , Humanos , Masculino , Trastornos Mentales/epidemiología , Trastornos Mentales/microbiología , Enfermedades del Sistema Nervioso/epidemiología , Enfermedades del Sistema Nervioso/microbiología
3.
Hum Brain Mapp ; 39(1): 204-217, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29030921

RESUMEN

Neural communication is facilitated by intricate networks of white matter (WM) comprised of both long and short range connections. The maturation of long range WM connections has been extensively characterized, with projection, commissural, and association tracts showing unique trajectories with age. There, however, remains a limited understanding of age-related changes occurring within short range WM connections, or U-fibers. These connections are important for local connectivity within lobes and facilitate regional cortical function and greater network economy. Recent studies have explored the maturation of U-fibers primarily using cross-sectional study designs. Here, we analyzed diffusion tensor imaging (DTI) data for healthy children and adolescents in both a cross-sectional (n = 78; mean age = 13.04 ± 3.27 years) and a primarily longitudinal (n = 26; mean age = 10.78 ± 2.69 years) cohort. We found significant age-related differences in fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) across the frontal, parietal, and temporal lobes of participants within the cross-sectional cohort. By contrast, we report significant age-related differences in only FA for participants within the longitudinal cohort. Specifically, larger FA values were observed with age in frontal, parietal, and temporal lobes of the left hemisphere. Our results extend previous findings restricted to long range WM to demonstrate regional changes in the microstructure of short range WM during childhood and adolescence. These changes possibly reflect continued myelination and axonal organization of short range WM with increasing age in more anterior regions of the left hemisphere. Hum Brain Mapp 39:204-217, 2018. © 2017 Wiley Periodicals, Inc.


Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/crecimiento & desarrollo , Adolescente , Desarrollo del Adolescente , Niño , Desarrollo Infantil , Preescolar , Estudios Transversales , Imagen de Difusión Tensora , Femenino , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Adulto Joven
4.
NPJ Digit Med ; 6(1): 195, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37864012

RESUMEN

Large language models (LLMs) are being integrated into healthcare systems; but these models may recapitulate harmful, race-based medicine. The objective of this study is to assess whether four commercially available large language models (LLMs) propagate harmful, inaccurate, race-based content when responding to eight different scenarios that check for race-based medicine or widespread misconceptions around race. Questions were derived from discussions among four physician experts and prior work on race-based medical misconceptions believed by medical trainees. We assessed four large language models with nine different questions that were interrogated five times each with a total of 45 responses per model. All models had examples of perpetuating race-based medicine in their responses. Models were not always consistent in their responses when asked the same question repeatedly. LLMs are being proposed for use in the healthcare setting, with some models already connecting to electronic health record systems. However, this study shows that based on our findings, these LLMs could potentially cause harm by perpetuating debunked, racist ideas.

5.
Brain Behav Immun Health ; 16: 100318, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34589808

RESUMEN

Recent investigations in neuroscience implicate the role of microbial-derived metabolites, such as short-chain fatty acids (SCFAs) in brain health and disease. The SCFAs acetate, propionate and butyrate have pleiotropic effects within the nervous system. They are crucial for the maturation of the brain's innate immune cells, the microglia, and modulate other glial cells through the aryl-hydrocarbon receptor. Investigations in preclinical and clinical models find that SCFAs exert neuroprotective and antidepressant affects, while also modulating the stress response and satiety. However, many investigations thus far have not assessed the impact of sex on SCFA activity. Our novel investigation tested the impact of physiologically relevant doses of SCFAs on male and female primary cortical astrocytes. We find that butyrate (0-25 â€‹µM) correlates with increased Bdnf and Pgc1-α expression, implicating histone-deacetylase inhibitor pathways. Intriguingly, this effect is only seen in females. We also find that acetate (0-1500 â€‹µM) correlates with increased Ahr and Gfap expression in males only, suggesting immune modulatory pathways. In males, propionate (0-35 â€‹µM) correlates with increased Il-22 expression, further suggesting immunomodulatory actions. These findings show a novel sex-dependent impact of acetate and butyrate, but not propionate on astrocyte gene expression.

6.
Neurosci Biobehav Rev ; 125: 698-761, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675857

RESUMEN

There is increasing knowledge regarding the role of the microbiome in modulating the brain and behaviour. Indeed, the actions of microbial metabolites are key for appropriate gut-brain communication in humans. Among these metabolites, short-chain fatty acids, tryptophan, and bile acid metabolites/pathways show strong preclinical evidence for involvement in various aspects of brain function and behaviour. With the identification of neuroactive gut-brain modules, new predictive tools can be applied to existing datasets. We identified 278 studies relating to the human microbiota-gut-brain axis which included sequencing data. This spanned across psychiatric and neurological disorders with a small number also focused on normal behavioural development. With a consistent bioinformatics pipeline, thirty-five of these datasets were reanalysed from publicly available raw sequencing files and the remainder summarised and collated. Among the reanalysed studies, we uncovered evidence of disease-related alterations in microbial metabolic pathways in Alzheimer's Disease, schizophrenia, anxiety and depression. Amongst studies that could not be reanalysed, many sequencing and technical limitations hindered the discovery of specific biomarkers of microbes or metabolites conserved across studies. Future studies are warranted to confirm our findings. We also propose guidelines for future human microbiome analysis to increase reproducibility and consistency within the field.


Asunto(s)
Microbioma Gastrointestinal , Salud Mental , Encéfalo , Humanos , Redes y Vías Metabólicas , Reproducibilidad de los Resultados
7.
Nat Aging ; 1(8): 666-676, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-37117767

RESUMEN

The gut microbiota is increasingly recognized as an important regulator of host immunity and brain health. The aging process yields dramatic alterations in the microbiota, which is linked to poorer health and frailty in elderly populations. However, there is limited evidence for a mechanistic role of the gut microbiota in brain health and neuroimmunity during aging processes. Therefore, we conducted fecal microbiota transplantation from either young (3-4 months) or old (19-20 months) donor mice into aged recipient mice (19-20 months). Transplant of a microbiota from young donors reversed aging-associated differences in peripheral and brain immunity, as well as the hippocampal metabolome and transcriptome of aging recipient mice. Finally, the young donor-derived microbiota attenuated selective age-associated impairments in cognitive behavior when transplanted into an aged host. Our results reveal that the microbiome may be a suitable therapeutic target to promote healthy aging.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Trasplante de Microbiota Fecal , Envejecimiento/genética , Encéfalo
8.
Biol Psychiatry ; 85(2): 150-163, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30064690

RESUMEN

It has been nearly 30 years since Dr. David Barker first highlighted the importance of prenatal factors in contributing to the developmental origins of adult disease. This concept was later broadened to include postnatal events. It is clear that the interaction between genetic predisposition and early life environmental exposures is key in this regard. However, recent research has also identified another important factor in the microbiota-the trillions of microorganisms that inhabit key body niches, including the vagina and gastrointestinal tract. Because the composition of these maternal microbiome sites has been linked to maternal metabolism and is also vertically transmitted to offspring, changes in the maternal microbiota are poised to significantly affect the newborn. In fact, several lines of evidence show that the gut microbiota interacts with diet, drugs, and stress both prenatally and postnatally and that these exogenous factors could also affect the dynamic changes in the microbiota composition occurring during pregnancy. Animal models have shown great utility in illuminating how these disruptions result in behavioral and brain morphological phenotypes reminiscent of psychiatric disorders (anxiety, depression, schizophrenia, and autism spectrum disorders). Increasing evidence points to critical interactions among the microbiota, host genetics, and both the prenatal and postnatal environments to temporally program susceptibility to psychiatric disorders later in life. Sex-specific phenotypes may be programmed through the influence of the microbiota on the hypothalamic-pituitary-adrenal axis and neuroimmune system.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Microbioma Gastrointestinal/fisiología , Trastornos Mentales/microbiología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , Animales , Femenino , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA