Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Development ; 150(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059590

RESUMEN

Most vertebrate species undergo tooth replacement throughout adult life. This process is marked by the shedding of existing teeth and the regeneration of tooth organs. However, little is known about the genetic circuitry regulating tooth replacement. Here, we tested whether fish orthologs of genes known to regulate mammalian hair regeneration have effects on tooth replacement. Using two fish species that demonstrate distinct modes of tooth regeneration, threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio), we found that transgenic overexpression of four different genes changed tooth replacement rates in the direction predicted by a hair regeneration model: Wnt10a and Grem2a increased tooth replacement rate, whereas Bmp6 and Dkk2 strongly inhibited tooth formation. Thus, similar to known roles in hair regeneration, Wnt and BMP signals promote and inhibit regeneration, respectively. Regulation of total tooth number was separable from regulation of replacement rates. RNA sequencing of stickleback dental tissue showed that Bmp6 overexpression resulted in an upregulation of Wnt inhibitors. Together, these data support a model in which different epithelial organs, such as teeth and hair, share genetic circuitry driving organ regeneration.


Asunto(s)
Smegmamorpha , Diente , Animales , Pez Cebra/genética , Odontogénesis/genética , Animales Modificados Genéticamente , Smegmamorpha/genética , Mamíferos
2.
Nature ; 585(7826): 563-568, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32939088

RESUMEN

Neural crest cells (NCCs) are migratory, multipotent embryonic cells that are unique to vertebrates and form an array of clade-defining adult features. The evolution of NCCs has been linked to various genomic events, including the evolution of new gene-regulatory networks1,2, the de novo evolution of genes3 and the proliferation of paralogous genes during genome-wide duplication events4. However, conclusive functional evidence linking new and/or duplicated genes to NCC evolution is lacking. Endothelin ligands (Edns) and endothelin receptors (Ednrs) are unique to vertebrates3,5,6, and regulate multiple aspects of NCC development in jawed vertebrates7-10. Here, to test whether the evolution of Edn signalling was a driver of NCC evolution, we used CRISPR-Cas9 mutagenesis11 to disrupt edn, ednr and dlx genes in the sea lamprey, Petromyzon marinus. Lampreys are jawless fishes that last shared a common ancestor with modern jawed vertebrates around 500 million years ago12. Thus, comparisons between lampreys and gnathostomes can identify deeply conserved and evolutionarily flexible features of vertebrate development. Using the frog Xenopus laevis to expand gnathostome phylogenetic representation and facilitate side-by-side analyses, we identify ancient and lineage-specific roles for Edn signalling. These findings suggest that Edn signalling was activated in NCCs before duplication of the vertebrate genome. Then, after one or more genome-wide duplications in the vertebrate stem, paralogous Edn pathways functionally diverged, resulting in NCC subpopulations with different Edn signalling requirements. We posit that this new developmental modularity facilitated the independent evolution of NCC derivatives in stem vertebrates. Consistent with this, differences in Edn pathway targets are associated with differences in the oropharyngeal skeleton and autonomic nervous system of lampreys and modern gnathostomes. In summary, our work provides functional genetic evidence linking the origin and duplication of new vertebrate genes with the stepwise evolution of a defining vertebrate novelty.


Asunto(s)
Endotelinas/metabolismo , Evolución Molecular , Cresta Neural/citología , Petromyzon/metabolismo , Transducción de Señal , Xenopus/metabolismo , Animales , Desarrollo Óseo , Huesos/citología , Huesos/metabolismo , Linaje de la Célula , Endotelinas/genética , Femenino , Cabeza/crecimiento & desarrollo , Corazón/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Ligandos , Masculino , Petromyzon/genética , Petromyzon/crecimiento & desarrollo , Receptores de Endotelina/deficiencia , Receptores de Endotelina/genética , Receptores de Endotelina/metabolismo , Xenopus/genética , Xenopus/crecimiento & desarrollo
3.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36805962

RESUMEN

Cis-regulatory changes are thought to play a major role in adaptation. Threespine sticklebacks have repeatedly colonized freshwater habitats in the Northern Hemisphere, where they have evolved a suite of phenotypes that distinguish them from marine populations, including changes in physiology, behavior, and morphology. To understand the role of gene regulatory evolution in adaptive divergence, here we investigate cis-regulatory changes in gene expression between marine and freshwater ecotypes through allele-specific expression (ASE) in F1 hybrids. Surveying seven ecologically relevant tissues, including three sampled across two developmental stages, we identified cis-regulatory divergence affecting a third of genes, nearly half of which were tissue-specific. Next, we compared allele-specific expression in dental tissues at two timepoints to characterize cis-regulatory changes during development between marine and freshwater fish. Applying a genome-wide test for selection on cis-regulatory changes, we find evidence for lineage-specific selection on several processes between ecotypes, including the Wnt signaling pathway in dental tissues. Finally, we show that genes with ASE, particularly those that are tissue-specific, are strongly enriched in genomic regions of repeated marine-freshwater divergence, supporting an important role for these cis-regulatory differences in parallel adaptive evolution of sticklebacks to freshwater habitats. Altogether, our results provide insight into the cis-regulatory landscape of divergence between stickleback ecotypes across tissues and during development, and support a fundamental role for tissue-specific cis-regulatory changes in rapid adaptation to new environments.


Asunto(s)
Smegmamorpha , Animales , Smegmamorpha/genética , Agua Dulce , Adaptación Fisiológica/genética , Genoma , Aclimatación
4.
Dev Biol ; 492: 111-118, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36198347

RESUMEN

Development and regeneration are orchestrated by gene regulatory networks that operate in part through transcriptional enhancers. Although many enhancers are pleiotropic and are active in multiple tissues, little is known about whether enhancer pleiotropy is due to 1) site pleiotropy, in which individual transcription factor binding sites (TFBS) are required for activity in multiple tissues, or 2) multiple distinct sites that regulate expression in different tissues. Here, we investigated the pleiotropy of an intronic enhancer of the stickleback Bone morphogenetic protein 6 (Bmp6) gene. This enhancer was previously shown to regulate evolved changes in tooth number and tooth regeneration, and is highly pleiotropic, with robust activity in both fins and teeth throughout embryonic, larval, and adult life, and in the heart and kidney in adult fish. We tested the hypothesis that the pleiotropy of this enhancer is due to site pleiotropy of an evolutionarily conserved predicted Foxc1 TFBS. Transgenic analysis and site-directed mutagenesis experiments both deleting and scrambling this predicted Foxc1 TFBS revealed that the binding site is required for enhancer activity in both teeth and fins throughout embryonic, larval, and adult development, and in the heart and kidney in adult fish. Collectively these data support a model where the pleiotropy of this Bmp6 enhancer is due to site pleiotropy and this putative binding site is required for enhancer activity in multiple anatomical sites from the embryo to the adult.


Asunto(s)
Proteína Morfogenética Ósea 6 , Smegmamorpha , Animales , Proteína Morfogenética Ósea 6/genética , Smegmamorpha/genética , Elementos de Facilitación Genéticos/genética , Sitios de Unión/genética , Aletas de Animales , Regulación del Desarrollo de la Expresión Génica/genética
5.
Nature ; 518(7540): 534-7, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25487155

RESUMEN

A defining feature of vertebrates (craniates) is a pronounced head that is supported and protected by a robust cellular endoskeleton. In the first vertebrates, this skeleton probably consisted of collagenous cellular cartilage, which forms the embryonic skeleton of all vertebrates and the adult skeleton of modern jawless and cartilaginous fish. In the head, most cellular cartilage is derived from a migratory cell population called the neural crest, which arises from the edges of the central nervous system. Because collagenous cellular cartilage and neural crest cells have not been described in invertebrates, the appearance of cellular cartilage derived from neural crest cells is considered a turning point in vertebrate evolution. Here we show that a tissue with many of the defining features of vertebrate cellular cartilage transiently forms in the larvae of the invertebrate chordate Branchiostoma floridae (Florida amphioxus). We also present evidence that during evolution, a key regulator of vertebrate cartilage development, SoxE, gained new cis-regulatory sequences that subsequently directed its novel expression in neural crest cells. Together, these results suggest that the origin of the vertebrate head skeleton did not depend on the evolution of a new skeletal tissue, as is commonly thought, but on the spread of this tissue throughout the head. We further propose that the evolution of cis-regulatory elements near an ancient regulator of cartilage differentiation was a major factor in the evolution of the vertebrate head skeleton.


Asunto(s)
Evolución Biológica , Cartílago , Cabeza , Anfioxos/anatomía & histología , Anfioxos/crecimiento & desarrollo , Cráneo , Vertebrados/anatomía & histología , Animales , Cartílago/citología , Cartílago/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros/genética , Anfioxos/citología , Larva/anatomía & histología , Larva/citología , Modelos Biológicos , Boca/anatomía & histología , Cresta Neural/citología , Factores de Transcripción SOXE/genética , Factores de Transcripción SOXE/metabolismo , Transducción de Señal , Cráneo/citología , Cráneo/metabolismo , Pez Cebra/embriología , Pez Cebra/genética
6.
Development ; 141(3): 629-38, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449839

RESUMEN

A defining feature of vertebrates (craniates) is a pronounced head supported and protected by a cellularized endoskeleton. In jawed vertebrates (gnathostomes), the head skeleton is made of rigid three-dimensional elements connected by joints. By contrast, the head skeleton of modern jawless vertebrates (agnathans) consists of thin rods of flexible cellular cartilage, a condition thought to reflect the ancestral vertebrate state. To better understand the origin and evolution of the gnathostome head skeleton, we have been analyzing head skeleton development in the agnathan, lamprey. The fibroblast growth factors FGF3 and FGF8 have various roles during head development in jawed vertebrates, including pharyngeal pouch morphogenesis, patterning of the oral skeleton and chondrogenesis. We isolated lamprey homologs of FGF3, FGF8 and FGF receptors and asked whether these functions are ancestral features of vertebrate development or gnathostome novelties. Using gene expression and pharmacological agents, we found that proper formation of the lamprey head skeleton requires two phases of FGF signaling: an early phase during which FGFs drive pharyngeal pouch formation, and a later phase when they directly regulate skeletal differentiation and patterning. In the context of gene expression and functional studies in gnathostomes, our results suggest that these roles for FGFs arose in the first vertebrates and that the evolution of the jaw and gnathostome cellular cartilage was driven by changes developmentally downstream from pharyngeal FGF signaling.


Asunto(s)
Evolución Biológica , Huesos/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Cabeza/embriología , Lampreas/embriología , Osteogénesis , Faringe/embriología , Animales , Huesos/efectos de los fármacos , Cartílago/citología , Cartílago/efectos de los fármacos , Cartílago/embriología , Embrión no Mamífero , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Lampreas/genética , Larva/efectos de los fármacos , Larva/metabolismo , Modelos Biológicos , Cresta Neural/citología , Cresta Neural/efectos de los fármacos , Cresta Neural/metabolismo , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Faringe/efectos de los fármacos , Faringe/metabolismo , Pirroles/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/genética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Tretinoina/farmacología , Xenopus laevis
7.
Development ; 139(22): 4220-31, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23034628

RESUMEN

Neural crest cells generate a range of cells and tissues in the vertebrate head and trunk, including peripheral neurons, pigment cells, and cartilage. Neural crest cells arise from the edges of the nascent central nervous system, a domain called the neural plate border (NPB). NPB induction is known to involve the BMP, Wnt and FGF signaling pathways. However, little is known about how these signals are integrated to achieve temporally and spatially specific expression of genes in NPB cells. Furthermore, the timing and relative importance of these signals in NPB formation appears to differ between vertebrate species. Here, we use heat-shock overexpression and chemical inhibitors to determine whether, and when, BMP, Wnt and FGF signaling are needed for expression of the NPB specifiers pax3a and zic3 in zebrafish. We then identify four evolutionarily conserved enhancers from the pax3a and zic3 loci and test their response to BMP, Wnt and FGF perturbations. We find that all three signaling pathways are required during gastrulation for the proper expression of pax3a and zic3 in the zebrafish NPB. We also find that, although the expression patterns driven by the pax3a and zic3 enhancers largely overlap, they respond to different combinations of BMP, Wnt and FGF signals. Finally, we show that the combination of the two pax3a enhancers is less susceptible to signaling perturbations than either enhancer alone. Taken together, our results reveal how BMPs, FGFs and Wnts act cooperatively and redundantly through partially redundant enhancers to achieve robust, specific gene expression in the zebrafish NPB.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/biosíntesis , Cresta Neural/metabolismo , Placa Neural/metabolismo , Factores de Transcripción Paired Box/biosíntesis , Factores de Transcripción/biosíntesis , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/biosíntesis , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Embrión no Mamífero/metabolismo , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Cresta Neural/citología , Placa Neural/citología , Factor de Transcripción PAX3 , Factores de Transcripción Paired Box/genética , Factores de Transcripción/genética , Vía de Señalización Wnt , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
8.
Genome Biol Evol ; 14(7)2022 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-35679302

RESUMEN

The variegated toad-headed agama, Phrynocephalus versicolor, lives in the arid landscape of the Chinese Gobi Desert. We analyzed populations from three different locations which vary in substrate color and altitude: Heishankou (HSK), Guazhou County (GZ), and Ejin Banner (EJN). The substrate color is either light-yellow (GZ-y), yellow (EJN-y), or black (HSK-b); the corresponding lizard population colors largely match their substrate in the degree of melanism. We assembled the P. versicolor genome and sequenced over 90 individuals from the three different populations. Genetic divergence between populations corresponds to their geographic distribution. We inferred the genetic relationships among these populations and used selection scans and differential expression to identify genes that show signatures of selection. Slc2a11 and akap12, among other genes, are highly differentiated and may be responsible for pigment adaptation to substrate color in P. versicolor.


Asunto(s)
Genoma Mitocondrial , Lagartos , Animales , Humanos , Lagartos/genética , Metagenómica , ARN de Transferencia/genética , Arena
9.
Evodevo ; 12(1): 4, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33766133

RESUMEN

BACKGROUND: Vertebrate teeth exhibit a wide range of regenerative systems. Many species, including most mammals, reptiles, and amphibians, form replacement teeth at a histologically distinct location called the successional dental lamina, while other species do not employ such a system. Notably, a 'lamina-less' tooth replacement condition is found in a paraphyletic array of ray-finned fishes, such as stickleback, trout, cod, medaka, and bichir. Furthermore, the position, renewal potential, and latency times appear to vary drastically across different vertebrate tooth regeneration systems. The progenitor cells underlying tooth regeneration thus present highly divergent arrangements and potentials. Given the spectrum of regeneration systems present in vertebrates, it is unclear if morphologically divergent tooth regeneration systems deploy an overlapping battery of genes in their naïve dental tissues. RESULTS: In the present work, we aimed to determine whether or not tooth progenitor epithelia could be composed of a conserved cell type between vertebrate dentitions with divergent regeneration systems. To address this question, we compared the pharyngeal tooth regeneration processes in two ray-finned fishes: zebrafish (Danio rerio) and threespine stickleback (Gasterosteus aculeatus). These two teleost species diverged approximately 250 million years ago and demonstrate some stark differences in dental morphology and regeneration. Here, we find that the naïve successional dental lamina in zebrafish expresses a battery of nine genes (bmpr1aa, bmp6, cd34, gli1, igfbp5a, lgr4, lgr6, nfatc1, and pitx2), while active Wnt signaling and Lef1 expression occur during early morphogenesis stages of tooth development. We also find that, despite the absence of a histologically distinct successional dental lamina in stickleback tooth fields, the same battery of nine genes (Bmpr1a, Bmp6, CD34, Gli1, Igfbp5a, Lgr4, Lgr6, Nfatc1, and Pitx2) are expressed in the basalmost endodermal cell layer, which is the region most closely associated with replacement tooth germs. Like zebrafish, stickleback replacement tooth germs additionally express Lef1 and exhibit active Wnt signaling. Thus, two fish systems that either have an organized successional dental lamina (zebrafish) or lack a morphologically distinct successional dental lamina (sticklebacks) deploy similar genetic programs during tooth regeneration. CONCLUSIONS: We propose that the expression domains described here delineate a highly conserved "successional dental epithelium" (SDE). Furthermore, a set of orthologous genes is known to mark hair follicle epithelial stem cells in mice, suggesting that regenerative systems in other epithelial appendages may utilize a related epithelial progenitor cell type, despite the highly derived nature of the resulting functional organs.

10.
Genetics ; 219(4)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34849839

RESUMEN

Mutations in enhancers have been shown to often underlie natural variation but the evolved differences in enhancer activity can be difficult to identify in vivo. Threespine sticklebacks (Gasterosteus aculeatus) are a robust system for studying enhancer evolution due to abundant natural genetic variation, a diversity of evolved phenotypes between ancestral marine and derived freshwater forms, and the tractability of transgenic techniques. Previous work identified a series of polymorphisms within an intronic enhancer of the Bone morphogenetic protein 6 (Bmp6) gene that are associated with evolved tooth gain, a derived increase in freshwater tooth number that arises late in development. Here, we use a bicistronic reporter construct containing a genetic insulator and a pair of reciprocal two-color transgenic reporter lines to compare enhancer activity of marine and freshwater alleles of this enhancer. In older fish, the two alleles drive partially overlapping expression in both mesenchyme and epithelium of developing teeth, but the freshwater enhancer drives a reduced mesenchymal domain and a larger epithelial domain relative to the marine enhancer. In younger fish, these spatial shifts in enhancer activity are less pronounced. Comparing Bmp6 expression by in situ hybridization in developing teeth of marine and freshwater fish reveals similar evolved spatial shifts in gene expression. Together, these data support a model in which the polymorphisms within this enhancer underlie evolved tooth gain by shifting the spatial expression of Bmp6 during tooth development, and provide a general strategy to identify spatial differences in enhancer activity in vivo.


Asunto(s)
Evolución Biológica , Proteína Morfogenética Ósea 6/genética , Elementos de Facilitación Genéticos/genética , Regulación del Desarrollo de la Expresión Génica , Smegmamorpha/genética , Diente/crecimiento & desarrollo , Aletas de Animales/metabolismo , Animales , Organismos Acuáticos , Epitelio/embriología , Agua Dulce , Perfilación de la Expresión Génica , Genes Reporteros , Hibridación in Situ , Mesodermo/embriología , Smegmamorpha/embriología , Smegmamorpha/crecimiento & desarrollo , Diente/embriología , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA