Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Genome Res ; 29(4): 668-681, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30782640

RESUMEN

Large-scale genetic interaction (GI) screens in yeast have been invaluable for our understanding of molecular systems biology and for characterizing novel gene function. Owing in part to the high costs and long experiment times required, a preponderance of GI data has been generated in a single environmental condition. However, an unknown fraction of GIs may be specific to other conditions. Here, we developed a pooled-growth CRISPRi-based sequencing assay for GIs, CRISPRiSeq, which increases throughput such that GIs can be easily assayed across multiple growth conditions. We assayed the fitness of approximately 17,000 strains encompassing approximately 7700 pairwise interactions in five conditions and found that the additional conditions increased the number of GIs detected nearly threefold over the number detected in rich media alone. In addition, we found that condition-specific GIs are prevalent and improved the power to functionally classify genes. Finally, we found new links during respiratory growth between members of the Ras nutrient-sensing pathway and both the COG complex and a gene of unknown function. Our results highlight the potential of conditional GI screens to improve our understanding of cellular genetic networks.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ambiente , Epistasis Genética , Redes Reguladoras de Genes , Técnicas Genéticas , Análisis de Secuencia de ADN/métodos , Genes Fúngicos , Saccharomyces cerevisiae/genética
2.
Nat Chem Biol ; 15(5): 549, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30833779

RESUMEN

In the version of this article originally published, several co-authors had incorrect affiliation footnote numbers listed in the author list. Tatiana Cañeque and Angelica Mariani should each have affiliation numbers 3, 4 and 5, and Emmanuelle Charafe-Jauffret should have number 6. Additionally, there was an extra space in the name of co-author Robert P. St.Onge. These errors have been corrected in the HTML and PDF versions of the paper and the Supplementary Information PDF.

3.
Nat Chem Biol ; 15(4): 358-366, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30742123

RESUMEN

Peripheral membrane proteins orchestrate many physiological and pathological processes, making regulation of their activities by small molecules highly desirable. However, they are often refractory to classical competitive inhibition. Here, we demonstrate that potent and selective inhibition of peripheral membrane proteins can be achieved by small molecules that target protein-membrane interactions by a noncompetitive mechanism. We show that the small molecule Bragsin inhibits BRAG2-mediated Arf GTPase activation in vitro in a manner that requires a membrane. In cells, Bragsin affects the trans-Golgi network in a BRAG2- and Arf-dependent manner. The crystal structure of the BRAG2-Bragsin complex and structure-activity relationship analysis reveal that Bragsin binds at the interface between the PH domain of BRAG2 and the lipid bilayer to render BRAG2 unable to activate lipidated Arf. Finally, Bragsin affects tumorsphere formation in breast cancer cell lines. Bragsin thus pioneers a novel class of drugs that function by altering protein-membrane interactions without disruption.


Asunto(s)
Factor 1 de Ribosilacion-ADP/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/fisiología , Factor 1 de Ribosilacion-ADP/metabolismo , Línea Celular Tumoral , GTP Fosfohidrolasas , Proteínas Activadoras de GTPasa , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Células HeLa , Humanos , Membrana Dobles de Lípidos , Glicoproteínas de Membrana/metabolismo , Nucleótidos , Dominios Homólogos a Pleckstrina/fisiología , Unión Proteica , Transducción de Señal , Relación Estructura-Actividad , Sulfotransferasas/metabolismo
4.
J Biol Chem ; 294(4): 1257-1266, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30514758

RESUMEN

Multidrug resistance is highly conserved in mammalian, fungal, and bacterial cells, is characterized by resistance to several unrelated xenobiotics, and poses significant challenges to managing infections and many cancers. Eukaryotes use a highly conserved set of drug efflux transporters that confer pleiotropic drug resistance (PDR). To interrogate the regulation of this critical process, here we developed a small molecule-responsive biosensor that couples transcriptional induction of PDR genes to growth rate in the yeast Saccharomyces cerevisiae Using diverse PDR inducers and the homozygous diploid deletion collection, we applied this biosensor system to genome-wide screens for potential PDR regulators. In addition to recapitulating the activity of previously known factors, these screens identified a series of genes involved in a variety of cellular processes with significant but previously uncharacterized roles in the modulation of yeast PDR. Genes identified as down-regulators of the PDR included those encoding the MAD family of proteins involved in the mitotic spindle assembly checkpoint (SAC) complex. Of note, we demonstrated that genetic disruptions of the mitotic spindle assembly checkpoint elevate expression of PDR-mediating efflux pumps in response to exposure to a variety of compounds that themselves have no known influence on the cell cycle. These results not only establish our biosensor system as a viable tool for investigating PDR in a high-throughput fashion, but also uncover critical control mechanisms governing the PDR response and a previously uncharacterized link between PDR and cell cycle regulation in yeast.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Técnicas Biosensibles , Puntos de Control del Ciclo Celular/genética , Resistencia a Múltiples Medicamentos/genética , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Genoma Fúngico , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética
5.
J Am Chem Soc ; 141(20): 8198-8206, 2019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31051070

RESUMEN

Fungal highly reducing polyketide synthases (HRPKSs) biosynthesize polyketides using a single set of domains iteratively. Product release is a critical step in HRPKS function to ensure timely termination and enzyme turnover. Nearly all of the HRPKSs characterized to date employ a separate thioesterase (TE) or acyltransferase enzyme for product release. In this study, we characterized two fungal HRPKSs that have fused C-terminal TE domains, a new domain architecture for fungal HRPKSs. We showed that both HRPKS-TEs synthesize aminoacylated polyketides in an ATP-independent fashion. The KU42 TE domain selects cysteine and homocysteine and catalyzes transthioesterification using the side-chain thiol group as the nucleophile. In contrast, the KU43 TE domain selects leucine methyl ester and performs a direct amidation of the polyketide, a reaction typically catalyzed by nonribosomal peptide synthetase (NRPS) domains. The characterization of these HRPKS-TE enzymes showcases the functional diversity of HRPKS enzymes and provides potential TE domains as biocatalytic tools to diversify HRPKS structures.


Asunto(s)
Basidiomycota/metabolismo , Policétidos/metabolismo , Tioléster Hidrolasas/metabolismo , Aminoacilación , Basidiomycota/enzimología , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Policétidos/química , Dominios Proteicos , Estereoisomerismo , Tioléster Hidrolasas/química
6.
Mol Syst Biol ; 13(7): 934, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28705884

RESUMEN

Many cellular functions are mediated by protein-protein interaction networks, which are environment dependent. However, systematic measurement of interactions in diverse environments is required to better understand the relative importance of different mechanisms underlying network dynamics. To investigate environment-dependent protein complex dynamics, we used a DNA-barcode-based multiplexed protein interaction assay in Saccharomyces cerevisiae to measure in vivo abundance of 1,379 binary protein complexes under 14 environments. Many binary complexes (55%) were environment dependent, especially those involving transmembrane transporters. We observed many concerted changes around highly connected proteins, and overall network dynamics suggested that "concerted" protein-centered changes are prevalent. Under a diauxic shift in carbon source from glucose to ethanol, a mass-action-based model using relative mRNA levels explained an estimated 47% of the observed variance in binary complex abundance and predicted the direction of concerted binary complex changes with 88% accuracy. Thus, we provide a resource of yeast protein interaction measurements across diverse environments and illustrate the value of this resource in revealing mechanisms of network dynamics.


Asunto(s)
Mapas de Interacción de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Simulación por Computador , Código de Barras del ADN Taxonómico , Perfilación de la Expresión Génica , Modelos Biológicos , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Mapeo de Interacción de Proteínas/métodos , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Biología de Sistemas
7.
Mol Syst Biol ; 13(2): 913, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28193641

RESUMEN

The low costs of array-synthesized oligonucleotide libraries are empowering rapid advances in quantitative and synthetic biology. However, high synthesis error rates, uneven representation, and lack of access to individual oligonucleotides limit the true potential of these libraries. We have developed a cost-effective method called Recombinase Directed Indexing (REDI), which involves integration of a complex library into yeast, site-specific recombination to index library DNA, and next-generation sequencing to identify desired clones. We used REDI to generate a library of ~3,300 DNA probes that exhibited > 96% purity and remarkable uniformity (> 95% of probes within twofold of the median abundance). Additionally, we created a collection of ~9,000 individually accessible CRISPR interference yeast strains for > 99% of genes required for either fermentative or respiratory growth, demonstrating the utility of REDI for rapid and cost-effective creation of strain collections from oligonucleotide pools. Our approach is adaptable to any complex DNA library, and fundamentally changes how these libraries can be parsed, maintained, propagated, and characterized.


Asunto(s)
Análisis de Secuencia de ADN/métodos , Levaduras/genética , Sistemas CRISPR-Cas , Biología Computacional/métodos , ADN de Hongos/genética , Biblioteca de Genes
8.
Nucleic Acids Res ; 44(11): 5365-77, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27198218

RESUMEN

Cas9, a CRISPR-associated RNA-guided nuclease, has been rapidly adopted as a tool for biochemical and genetic manipulation of DNA. Although complexes between Cas9 and guide RNAs (gRNAs) offer remarkable specificity and versatility for genome manipulation, mis-targeted events occur. To extend the understanding of gRNA::target homology requirements, we compared mutational tolerance for a set of Cas9::gRNA complexes in vitro and in vivo (in Saccharomyces cerevisiae). A variety of gRNAs were tested with variant libraries based on four different targets (with varying GC content and sequence features). In each case, we challenged a mixture of matched and mismatched targets, evaluating cleavage activity on a wide variety of potential target sequences in parallel through high-throughput sequencing of the products retained after cleavage. These experiments evidenced notable and consistent differences between in vitro and S. cerevisiae (in vivo) Cas9 cleavage specificity profiles including (i) a greater tolerance for mismatches in vitro and (ii) a greater specificity increase in vivo with truncation of the gRNA homology regions.


Asunto(s)
Disparidad de Par Base , Endonucleasas/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Secuencia de Bases , Variación Genética , Recombinación Genética , Especificidad por Sustrato
9.
Nat Chem Biol ; 10(1): 76-84, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24292071

RESUMEN

Sec14-like phosphatidylinositol transfer proteins (PITPs) integrate diverse territories of intracellular lipid metabolism with stimulated phosphatidylinositol-4-phosphate production and are discriminating portals for interrogating phosphoinositide signaling. Yet, neither Sec14-like PITPs nor PITPs in general have been exploited as targets for chemical inhibition for such purposes. Herein, we validate what is to our knowledge the first small-molecule inhibitors (SMIs) of the yeast PITP Sec14. These SMIs are nitrophenyl(4-(2-methoxyphenyl)piperazin-1-yl)methanones (NPPMs) and are effective inhibitors in vitro and in vivo. We further establish that Sec14 is the sole essential NPPM target in yeast and that NPPMs exhibit exquisite targeting specificities for Sec14 (relative to related Sec14-like PITPs), propose a mechanism for how NPPMs exert their inhibitory effects and demonstrate that NPPMs exhibit exquisite pathway selectivity in inhibiting phosphoinositide signaling in cells. These data deliver proof of concept that PITP-directed SMIs offer new and generally applicable avenues for intervening with phosphoinositide signaling pathways with selectivities superior to those afforded by contemporary lipid kinase-directed strategies.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transducción de Señal , Unión Proteica , Relación Estructura-Actividad
10.
Nat Genet ; 39(2): 199-206, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17206143

RESUMEN

Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination-derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.


Asunto(s)
ARN Helicasas DEAD-box/genética , Eliminación de Gen , Genes Fúngicos , Metilmetanosulfonato/toxicidad , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Reparación del ADN , Modelos Genéticos , Datos de Secuencia Molecular , RecQ Helicasas/genética
11.
Proc Natl Acad Sci U S A ; 109(23): 9213-8, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22615397

RESUMEN

Changes in protein-protein interactions that occur in response to environmental cues are difficult to uncover and have been poorly characterized to date. Here we describe a yeast-based assay that allows many binary protein interactions to be assessed in parallel and under various conditions. This method combines molecular bar-coding and tag array technology with the murine dihydrofolate reductase-based protein-fragment complementation assay. A total of 238 protein-fragment complementation assay strains, each representing a unique binary protein complex, were tagged with molecular barcodes, pooled, and then interrogated against a panel of 80 diverse small molecules. Our method successfully identified specific disruption of the Hom3:Fpr1 interaction by the immunosuppressant FK506, illustrating the assay's capacity to identify chemical inhibitors of protein-protein interactions. Among the additional findings was specific cellular depletion of the Dst1:Rbp9 complex by the anthracycline drug doxorubicin, but not by the related drug idarubicin. The assay also revealed chemical-induced accumulation of several binary multidrug transporter complexes that largely paralleled increases in transcript levels. Further assessment of two such interactions (Tpo1:Pdr5 and Snq2:Pdr5) in the presence of 1,246 unique chemical compounds revealed a positive correlation between drug lipophilicity and the drug response in yeast.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/genética , Bibliotecas de Moléculas Pequeñas/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Animales , Biología Computacional , Proteínas de Unión al ADN , Ratones , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Formil Péptido/metabolismo , Proteínas de Saccharomyces cerevisiae , Tacrolimus , Levaduras
12.
BMC Genomics ; 15: 263, 2014 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-24708151

RESUMEN

BACKGROUND: Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. RESULTS: We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu's positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson's disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. CONCLUSIONS: A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations.


Asunto(s)
Cobre/metabolismo , Homeostasis/genética , Levaduras/genética , Levaduras/metabolismo , Respiración de la Célula , Análisis por Conglomerados , Cobre/deficiencia , Medios de Cultivo , Disulfiram/farmacología , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homeostasis/efectos de los fármacos , Humanos , Hidrazinas/farmacología , Concentración de Iones de Hidrógeno , Fenotipo , Vacuolas/genética , Vacuolas/metabolismo , Levaduras/efectos de los fármacos
13.
Nat Methods ; 8(2): 159-64, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21217751

RESUMEN

Phenotypes that might otherwise reveal a gene's function can be obscured by genes with overlapping function. This phenomenon is best known within gene families, in which an important shared function may only be revealed by mutating all family members. Here we describe the 'green monster' technology that enables precise deletion of many genes. In this method, a population of deletion strains with each deletion marked by an inducible green fluorescent protein reporter gene, is subjected to repeated rounds of mating, meiosis and flow-cytometric enrichment. This results in the aggregation of multiple deletion loci in single cells. The green monster strategy is potentially applicable to assembling other engineered alterations in any species with sex or alternative means of allelic assortment. To test the technology, we generated a single broadly drug-sensitive strain of Saccharomyces cerevisiae bearing precise deletions of all 16 ATP-binding cassette transporters within clades associated with multidrug resistance.


Asunto(s)
Eliminación de Gen , Técnicas de Inactivación de Genes/métodos , Proteínas Fluorescentes Verdes/análisis , Familia de Multigenes , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Fluorescentes Verdes/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
14.
Appl Environ Microbiol ; 80(14): 4153-61, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24795371

RESUMEN

The vast majority of microscopic life on earth consists of microbes that do not grow in laboratory culture. To profile the microbial diversity in environmental and clinical samples, we have devised and employed molecular probe technology, which detects and identifies bacteria that do and do not grow in culture. The only requirement is a short sequence of contiguous bases (currently 60 bases) unique to the genome of the organism of interest. The procedure is relatively fast, inexpensive, customizable, robust, and culture independent and uses commercially available reagents and instruments. In this communication, we report improving the specificity of the molecular probes substantially and increasing the complexity of the molecular probe set by over an order of magnitude (>1,200 probes) and introduce a new final readout method based upon Illumina sequencing. In addition, we employed molecular probes to identify the bacteria from vaginal swabs and demonstrate how a deliberate selection of molecular probes can identify less abundant bacteria even in the presence of much more abundant species.


Asunto(s)
Bacterias/aislamiento & purificación , Sondas Moleculares/química , Bacterias/clasificación , Bacterias/genética , Técnicas Bacteriológicas/métodos , ADN Bacteriano/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oligonucleótidos/síntesis química , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y Especificidad , Análisis de Secuencia de ADN
15.
Proc Natl Acad Sci U S A ; 108(29): 11989-94, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21715656

RESUMEN

Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases.


Asunto(s)
Clorhexidina/farmacología , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/métodos , Miopatías Mitocondriales/tratamiento farmacológico , ATPasas de Translocación de Protón Mitocondriales/genética , Ácido Oléico/farmacología , Retinitis Pigmentosa/tratamiento farmacológico , Línea Celular , Clorhexidina/uso terapéutico , Perfilación de la Expresión Génica , Humanos , Mutagénesis Sitio-Dirigida , Mutación/genética , Ácido Oléico/uso terapéutico , Saccharomycetales
16.
bioRxiv ; 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38352467

RESUMEN

Genome editing technologies have the potential to transform our understanding of how genetic variation gives rise to complex traits through the systematic engineering and phenotypic characterization of genetic variants. However, there has yet to be a system with sufficient efficiency, fidelity, and throughput to comprehensively identify causal variants at the genome scale. Here we explored the ability of templated CRISPR editing systems to install natural variants genome-wide in budding yeast. We optimized several approaches to enhance homology-directed repair (HDR) with donor DNA templates, including donor recruitment to target sites, single-stranded donor production by bacterial retrons, and in vivo plasmid assembly. We uncovered unique advantages of each system that we integrated into a single superior system named MAGESTIC 3.0. We used MAGESTIC 3.0 to dissect causal variants residing in 112 quantitative trait loci across 32 environmental conditions, revealing an enrichment for missense variants and loci with multiple causal variants. MAGESTIC 3.0 will facilitate the functional analysis of the genome at single-nucleotide resolution and provides a roadmap for improving template-based genome editing systems in other organisms.

17.
PLoS Pathog ; 6(10): e1001140, 2010 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-20949076

RESUMEN

Candida albicans is the most common human fungal pathogen, causing infections that can be lethal in immunocompromised patients. Although Saccharomyces cerevisiae has been used as a model for C. albicans, it lacks C. albicans' diverse morphogenic forms and is primarily non-pathogenic. Comprehensive genetic analyses that have been instrumental for determining gene function in S. cerevisiae are hampered in C. albicans, due in part to limited resources to systematically assay phenotypes of loss-of-function alleles. Here, we constructed and screened a library of 3633 tagged heterozygous transposon disruption mutants, using them in a competitive growth assay to examine nutrient- and drug-dependent haploinsufficiency. We identified 269 genes that were haploinsufficient in four growth conditions, the majority of which were condition-specific. These screens identified two new genes necessary for filamentous growth as well as ten genes that function in essential processes. We also screened 57 chemically diverse compounds that more potently inhibited growth of C. albicans versus S. cerevisiae. For four of these compounds, we examined the genetic basis of this differential inhibition. Notably, Sec7p was identified as the target of brefeldin A in C. albicans screens, while S. cerevisiae screens with this compound failed to identify this target. We also uncovered a new C. albicans-specific target, Tfp1p, for the synthetic compound 0136-0228. These results highlight the value of haploinsufficiency screens directly in this pathogen for gene annotation and drug target identification.


Asunto(s)
Candida albicans/genética , Elementos Transponibles de ADN , Descubrimiento de Drogas/métodos , Anotación de Secuencia Molecular/métodos , Terapia Molecular Dirigida/métodos , Organismos Modificados Genéticamente , Candida albicans/fisiología , Elementos Transponibles de ADN/genética , Alimentos , Perfilación de la Expresión Génica , Biblioteca Genómica , Haploinsuficiencia/genética , Análisis por Micromatrices , Modelos Biológicos , Mutagénesis Insercional/métodos , Organismos Modificados Genéticamente/genética , Lugares Marcados de Secuencia
18.
BMC Microbiol ; 12: 29, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22404909

RESUMEN

BACKGROUND: Our ultimate goal is to detect the entire human microbiome, in health and in disease, in a single reaction tube, and employing only commercially available reagents. To that end, we adapted molecular inversion probes to detect bacteria using solely a massively multiplex molecular technology. This molecular probe technology does not require growth of the bacteria in culture. Rather, the molecular probe technology requires only a sequence of forty sequential bases unique to the genome of the bacterium of interest. In this communication, we report the first results of employing our molecular probes to detect bacteria in clinical samples. RESULTS: While the assay on Affymetrix GenFlex Tag16K arrays allows the multiplexing of the detection of the bacteria in each clinical sample, one Affymetrix GenFlex Tag16K array must be used for each clinical sample. To multiplex the clinical samples, we introduce a second, independent assay for the molecular probes employing Sequencing by Oligonucleotide Ligation and Detection. By adding one unique oligonucleotide barcode for each clinical sample, we combine the samples after processing, but before sequencing, and sequence them together. CONCLUSIONS: Overall, we have employed 192 molecular probes representing 40 bacteria to detect the bacteria in twenty-one vaginal swabs as assessed by the Affymetrix GenFlex Tag16K assay and fourteen of those by the Sequencing by Oligonucleotide Ligation and Detection assay. The correlations among the assays were excellent.


Asunto(s)
Bacterias , Técnicas Microbiológicas/métodos , Técnicas de Sonda Molecular , Bacterias/genética , Bacterias/aislamiento & purificación , Simulación por Computador , Femenino , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Reproducibilidad de los Resultados , Vagina/microbiología
19.
Nucleic Acids Res ; 38(13): e142, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20460461

RESUMEN

Next-generation sequencing has proven an extremely effective technology for molecular counting applications where the number of sequence reads provides a digital readout for RNA-seq, ChIP-seq, Tn-seq and other applications. The extremely large number of sequence reads that can be obtained per run permits the analysis of increasingly complex samples. For lower complexity samples, however, a point of diminishing returns is reached when the number of counts per sequence results in oversampling with no increase in data quality. A solution to making next-generation sequencing as efficient and affordable as possible involves assaying multiple samples in a single run. Here, we report the successful 96-plexing of complex pools of DNA barcoded yeast mutants and show that such 'Bar-seq' assessment of these samples is comparable with data provided by barcode microarrays, the current benchmark for this application. The cost reduction and increased throughput permitted by highly multiplexed sequencing will greatly expand the scope of chemogenomics assays and, equally importantly, the approach is suitable for other sequence counting applications that could benefit from massive parallelization.


Asunto(s)
Análisis de Secuencia de ADN/métodos , Mutación , Reacción en Cadena de la Polimerasa , Saccharomyces cerevisiae/genética
20.
Proc Natl Acad Sci U S A ; 105(9): 3461-6, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18305163

RESUMEN

Sometimes mutations in two genes produce a phenotype that is surprising in light of each mutation's individual effects. This phenomenon, which defines genetic interaction, can reveal functional relationships between genes and pathways. For example, double mutants with surprisingly slow growth define synergistic interactions that can identify compensatory pathways or protein complexes. Recent studies have used four mathematically distinct definitions of genetic interaction (here termed Product, Additive, Log, and Min). Whether this choice holds practical consequences has not been clear, because the definitions yield identical results under some conditions. Here, we show that the choice among alternative definitions can have profound consequences. Although 52% of known synergistic genetic interactions in Saccharomyces cerevisiae were inferred according to the Min definition, we find that both Product and Log definitions (shown here to be practically equivalent) are better than Min for identifying functional relationships. Additionally, we show that the Additive and Log definitions, each commonly used in population genetics, lead to differing conclusions related to the selective advantages of sexual reproduction.


Asunto(s)
Redes y Vías Metabólicas/genética , Modelos Genéticos , Mutación , Modelos Teóricos , Fenotipo , Reproducción/genética , Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA