Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Physiol ; 600(9): 2049-2075, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35294064

RESUMEN

Twenty-five years ago, a new physiological preparation called the working heart-brainstem preparation (WHBP) was introduced with the claim it would provide a new platform allowing studies not possible before in cardiovascular, neuroendocrine, autonomic and respiratory research. Herein, we review some of the progress made with the WHBP, some advantages and disadvantages along with potential future applications, and provide photographs and technical drawings of all the customised equipment used for the preparation. Using mice or rats, the WHBP is an in situ experimental model that is perfused via an extracorporeal circuit benefitting from unprecedented surgical access, mechanical stability of the brain for whole cell recording and an uncompromised use of pharmacological agents akin to in vitro approaches. The preparation has revealed novel mechanistic insights into, for example, the generation of distinct respiratory rhythms, the neurogenesis of sympathetic activity, coupling between respiration and the heart and circulation, hypothalamic and spinal control mechanisms, and peripheral and central chemoreceptor mechanisms. Insights have been gleaned into diseases such as hypertension, heart failure and sleep apnoea. Findings from the in situ preparation have been ratified in conscious in vivo animals and when tested have translated to humans. We conclude by discussing potential future applications of the WHBP including two-photon imaging of peripheral and central nervous systems and adoption of pharmacogenetic tools that will improve our understanding of physiological mechanisms and reveal novel mechanisms that may guide new treatment strategies for cardiorespiratory diseases.


Asunto(s)
Tronco Encefálico , Corazón , Animales , Tronco Encefálico/fisiología , Fenómenos Fisiológicos Cardiovasculares , Corazón/fisiología , Pulmón , Ratones , Ratas , Respiración
2.
Nat Neurosci ; 9(3): 311-3, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16474390

RESUMEN

In severe hypoxia, homeostatic mechanisms maintain function of the brainstem respiratory network. We hypothesized that hypoxia involves a transition from neuronal mechanisms of normal breathing (eupnea) to a rudimentary pattern of inspiratory movements (gasping). We provide evidence for hypoxia-driven transformation within the central respiratory oscillator, in which gasping relies on persistent sodium current, whereas eupnea does not depend on this cellular mechanism.


Asunto(s)
Relojes Biológicos/fisiología , Tronco Encefálico/crecimiento & desarrollo , Inhalación/fisiología , Red Nerviosa/crecimiento & desarrollo , Centro Respiratorio/crecimiento & desarrollo , Canales de Sodio/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Relojes Biológicos/efectos de los fármacos , Tronco Encefálico/efectos de los fármacos , Hipoxia/fisiopatología , Inhalación/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Periodicidad , Ratas , Centro Respiratorio/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Canales de Sodio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
3.
J Physiol ; 587(Pt 13): 3175-88, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19417093

RESUMEN

Using the in situ arterially perfused preparations of both neonatal and juvenile rats, we provide the first description of the location, morphology and transmitter content of a population of respiratory neurones that retains a bursting behaviour after ionotropic receptor blockade. All burster neurones exhibited an inspiratory discharge during eupnoeic respiration. These neurones were predominantly glutamatergic, and were located within a region of the ventral respiratory column that encompasses the pre-Bötzinger complex and the more caudally located ventral respiratory group. Bursting behaviour was both voltage and persistent sodium current dependent and could be stimulated by sodium cyanide to activate this persistent sodium current. The population of burster neurones may overlap with that previously described in the neonatal slice in vitro. Based upon the present and previous findings, we hypothesize that this burster discharge may be released when the brain is subject to severe hypoxia or ischaemia, and that this burster discharge could underlie gasping.


Asunto(s)
Bulbo Raquídeo/citología , Bulbo Raquídeo/fisiología , Respiración , Animales , Animales Recién Nacidos , Fenómenos Electrofisiológicos , Hipoxia-Isquemia Encefálica/fisiopatología , Potenciales de la Membrana , Técnicas de Placa-Clamp , Ratas , Sodio/metabolismo , Transmisión Sináptica
4.
J Appl Physiol (1985) ; 107(3): 679-85, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19213935

RESUMEN

Eupnea is normal breathing. If eupnea fails, as in severe hypoxia or ischemia, gasping is recruited. Gasping can serve as a powerful mechanism for autoresuscitation. A failure of autoresuscitation has been proposed as a basis of the sudden infant death syndrome. In an in vitro preparation, endogenous serotonin is reported to be essential for expression of gasping. Using an in situ preparation of the Pet-1 knockout mouse, we evaluated such a critical role for serotonin. In this mouse, the number of serotonergic neurons is reduced by 85-90% compared with animals without this homozygous genetic defect. Despite this reduction in the number of serotonergic neurons, phrenic discharge in eupnea and gasping of Pet-1 knockout mice was not different from that of wild-type mice. Indeed, gasping continued unabated, even after administration of methysergide, a blocker of many types of receptors for serotonin, to Pet-1 knockout mice. We conclude that serotonin is not critical for expression of gasping. The proposal for such a critical role, on the basis of observations in the in vitro slice preparation, may reflect the minimal functional neuronal tissue and neurotransmitters in this preparation, such that the role of any remaining neurotransmitters is magnified. Also, rhythmic activity of the in vitro slice preparation has been characterized as eupnea or gasping solely on the basis of activity of the hypoglossal nerve or massed neuronal activities of the ventrolateral medulla. The accuracy of this method of classification has not been established.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Mecánica Respiratoria/fisiología , Serotonina/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/genética , Antagonistas Adrenérgicos alfa/farmacología , Animales , Dioxanos/farmacología , Electrofisiología , Genotipo , Hipoxia/fisiopatología , Metisergida/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nervio Frénico/fisiología , Mecánica Respiratoria/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Antagonistas de la Serotonina/farmacología
5.
J Appl Physiol (1985) ; 107(3): 686-95, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19478196

RESUMEN

If normal, eupneic breathing fails, gasping is recruited. Serotonin was proposed as essential for gasping, based on findings using an in vitro mouse preparation. This preparation generates rhythmic activities of the hypoglossal nerve that are considered to be akin to both eupnea and gasping. In previous studies, gasping of in situ rat and mouse preparations continued unabated following blockers of receptors for serotonin. However, hypoglossal activity was not recorded in the mouse, and we hypothesized that its discharge during gasping might be dependent on serotonin. In the in situ mouse preparation, hypoglossal discharge had varying and inconsistent patterns during eupnea, discharging concomitant with the phrenic burst, at varying intervals between phrenic bursts, or was silent in some respiratory cycles. In eupnea, phrenic discharge was incrementing, whereas hypoglossal discharge was decrementing in 15 of 20 preparations. During ischemia-induced gasping, peak phrenic height was reached at 205 +/- 17 ms, compared with 282 +/- 27.9 ms after the start of the eupneic burst (P < 0.002). In contrast, rates of rise of hypoglossal discharge in gasping (peak at 233 +/- 25 ms) and eupnea (peak at 199 +/- 19.2 ms) were the same. The uncoupling of hypoglossal from phrenic discharge in eupnea was exacerbated by methysergide, an antagonist of serotonin receptors. These findings demonstrate that hypoglossal discharge alone cannot distinguish eupnea from gasping nor, in eupnea, can hypoglossal activity be used to differentiate neural inspiration from expiration. These findings have significant negative implications for conclusions drawn from the in vitro medullary slice of mouse.


Asunto(s)
Nervio Hipogloso/fisiología , Nervio Frénico/fisiología , Mecánica Respiratoria/fisiología , ATPasas Asociadas con Actividades Celulares Diversas , Adenosina Trifosfatasas/metabolismo , Animales , Nervios Craneales/fisiología , Electromiografía , Hipoxia/fisiopatología , Isquemia/fisiopatología , Metisergida/farmacología , Ratones , Ratones Noqueados , Antagonistas de la Serotonina/farmacología , Nervios Espinales/fisiología , Nervio Vago/fisiología
6.
J Appl Physiol (1985) ; 104(3): 665-73, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18162482

RESUMEN

In severe hypoxia or ischemia, normal eupneic breathing fails and is replaced by gasping. Gasping serves as part of a process of autoresuscitation by which eupnea is reestablished. Medullary neurons, having a burster, pacemaker discharge, underlie gasping. Conductance through persistent sodium channels is essential for the burster discharge. This conductance is modulated by norepinephrine, acting on alpha 1-adrenergic receptors, and serotonin, acting on 5-HT2 receptors. We hypothesized that blockers of 5-HT2 receptors and alpha 1-adrenergic receptors would alter autoresuscitation. The in situ perfused preparation of the juvenile rat was used. Integrated phrenic discharge was switched from an incrementing pattern, akin to eupnea, to the decrementing pattern comparable to gasping in hypoxic hypercapnia. With a restoration of hyperoxic normocapnia, rhythmic, incrementing phrenic discharge returned within 10 s in most preparations. Following addition of blockers of alpha 1-adrenergic receptors (WB-4101, 0.0625-0.500 microM) and/or blockers of 5-HT2 (ketanserin, 1.25-10 microM) or multiple 5-HT receptors (methysergide, 3.0-10 microM) to the perfusate, incrementing phrenic discharge continued. Fictive gasping was still induced, although it ceased after significantly fewer decrementing bursts than in preparations than received no blockers. Moreover, the time for recovery of rhythmic activity was significantly prolonged. This prolongation was in excess of 100 s in all preparations that received both WB-4101 (above 0.125 microM) and methysergide (above 2.5 microM). We conclude that activation of adrenergic and 5-HT2 receptors is important to sustain gasping and to restore rhythmic respiratory activity after hypoxia-induced depression.


Asunto(s)
Antagonistas de Receptores Adrenérgicos alfa 1 , Antagonistas Adrenérgicos alfa/farmacología , Diafragma/inervación , Hipoxia/fisiopatología , Nervio Frénico/efectos de los fármacos , Mecánica Respiratoria/efectos de los fármacos , Antagonistas del Receptor de Serotonina 5-HT2 , Antagonistas de la Serotonina/farmacología , Agonistas alfa-Adrenérgicos/farmacología , Anfetaminas/farmacología , Animales , Estado de Descerebración , Dioxanos/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipoxia/metabolismo , Ketanserina/farmacología , Metoxamina/farmacología , Metisergida/farmacología , Periodicidad , Nervio Frénico/fisiopatología , Ratas , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de Serotonina 5-HT2/metabolismo , Agonistas de Receptores de Serotonina/farmacología
7.
Respir Physiol Neurobiol ; 160(3): 353-6, 2008 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-18207465

RESUMEN

Two groups of intrinsically bursting neurons, linked to respiration, have been identified using in vitro medullary slice preparations. One group is dependent upon a calcium-activated nonspecific cationic current that is blocked by flufanemic acid. This group is hypothesized as essential for eupnea, but not gasping. The second group is dependent upon conductance through persistent sodium channels that is blocked by riluzole. This group is proposed to underlie both eupnea and gasping. In the decerebrate in situ preparation of the juvenile rat, flufanemic acid caused an increase in frequency and a decrease in peak level of the phrenic and vagus nerve activities in both eupnea and gasping. Similar changes in eupnea followed the simultaneous blockades by flufanemic acid and riluzole. However, gasping was eliminated. These results do not support the hypothesis that conductances through either persistent sodium channels or calcium-activated nonspecific cationic channels are essential for the neurogenesis of eupnea. However, gasping does depend upon a conductance through persistent sodium channels.


Asunto(s)
Potenciales de Acción/fisiología , Pulmón/inervación , Respiración , Centro Respiratorio/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Estado de Descerebración/fisiopatología , Antagonistas de Aminoácidos Excitadores/farmacología , Ácido Flufenámico/farmacología , Técnicas In Vitro , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Ratas , Respiración/efectos de los fármacos , Centro Respiratorio/efectos de los fármacos , Riluzol/farmacología , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología
8.
J Appl Physiol (1985) ; 103(1): 220-7, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17412795

RESUMEN

In severe hypoxia or ischemia, normal eupneic breathing is replaced by gasping, which can serve as a powerful mechanism for "autoresuscitation." We have proposed that gasping is generated by medullary neurons having intrinsic pacemaker bursting properties dependent on a persistent sodium current. A number of neuromodulators, including serotonin, influence persistent sodium currents. Thus we hypothesized that endogenous serotonin is essential for gasping to be generated. To assess such a critical role for serotonin, a preparation of the perfused, juvenile in situ rat was used. Activities of the phrenic, hypoglossal, and vagal nerves were recorded. We added blockers of type 1 and/or type 2 classes of serotonergic receptors to the perfusate delivered to the preparation. Eupnea continued following additions of any of the blockers. Changes were limited to an increase in the frequency of phrenic bursts and a decline in peak heights of all neural activities. In ischemia, gasping was induced following any of the blockers. Few statistically significant changes in parameters of gasping were found. We thus did not find a differential suppression of gasping, compared with eupnea, following blockers of serotonin receptors. Such a differential suppression had been proposed based on findings using an in vitro preparation. We hypothesize that multiple neurotransmitters/neuromodulators influence medullary mechanisms underlying the neurogenesis of gasping. In greatly reduced in vitro preparations, the importance of any individual neuromodulator, such as serotonin, may be exaggerated compared with its role in more intact preparations.


Asunto(s)
Isquemia/fisiopatología , Pulmón/inervación , Nervios Periféricos/efectos de los fármacos , Mecánica Respiratoria/efectos de los fármacos , Antagonistas del Receptor de Serotonina 5-HT1 , Antagonistas del Receptor de Serotonina 5-HT2 , Antagonistas de la Serotonina/farmacología , Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralin/farmacología , Animales , Estado de Descerebración , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Nervio Hipogloso/efectos de los fármacos , Nervio Hipogloso/metabolismo , Isquemia/metabolismo , Ketanserina/farmacología , Metisergida/farmacología , Nervios Periféricos/metabolismo , Nervio Frénico/efectos de los fármacos , Nervio Frénico/metabolismo , Ratas , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Serotonina 5-HT1/metabolismo , Agonistas de Receptores de Serotonina/farmacología , Factores de Tiempo , Nervio Vago/efectos de los fármacos , Nervio Vago/metabolismo
9.
Respir Physiol Neurobiol ; 155(1): 97-100, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-16901771

RESUMEN

We have proposed a "switching" concept for the neurogenesis of breathing in which rhythm generation by a pontomedullary neuronal circuit for eupnea may be switched to a medullary pacemaker system for gasping. This switch involves activation of conductances through persistent sodium channels. Based upon this proposal, eupnea should continue following a blockade of persistent sodium channels. In situ preparations of the decerebrate, juvenile rat were studied in normocapnia, hypocapnia and hypercapnia. Regardless of the level of CO(2) drive, riluzole (1-10 microM), a blocker of persistent sodium channels, caused increases in the frequency and reductions in peak integrated phrenic height. Even 20 microM of riluzole, a concentration four-fold higher than that which eliminates gasping, did not cause a cessation of phrenic discharge. In conscious, rats breathing continued unabated following intravenous administrations of 3-9 mgkg(-1) of riluzole. These administrations did cause sedation. We conclude that conductance through persistent sodium channels plays little role in the neurogenesis of eupnea.


Asunto(s)
Mecánica Respiratoria/efectos de los fármacos , Mecánica Respiratoria/fisiología , Riluzol/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Animales , Dióxido de Carbono/sangre , Estado de Descerebración/fisiopatología , Electromiografía , Hipercapnia/sangre , Hipoxia/fisiopatología , Inyecciones Intravenosas , Masculino , Bulbo Raquídeo/efectos de los fármacos , Bulbo Raquídeo/fisiología , Nervio Frénico/fisiopatología , Ratas , Músculos Respiratorios/fisiología , Riluzol/administración & dosificación , Bloqueadores de los Canales de Sodio/administración & dosificación
10.
Epilepsy Res ; 70(2-3): 218-28, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16765566

RESUMEN

Sudden unexplained death in epilepsy (SUDEP) has been proposed to result from seizure-induced changes in respiratory and cardiac function. Our purpose was to characterize changes in respiration during seizures. We used a preparation of the anaesthetized, perfused in situ rat. This preparation has the advantage over in vivo preparations in that delivery of oxygen to the brain does not depend upon the lungs or cardiovascular system. Electroencephalographic activity was recorded as were activities of the hypoglossal, vagus and phrenic nerves. The hypoglossal and vagus nerves innervate muscles of the upper airway and larynx while the phrenic nerve innervates the diaphragm. Fictive seizures were elicited by injections of penicillin into the parietal cortex or the carotid artery. Following elicitation of the fictive seizures, activities of the hypoglossal and vagal nerves declined greatly while phrenic activity was little altered. Such a differential depression of activities of nerves to the upper airway and larynx, compared to that to the diaphragm, would predispose to obstructive apnea in intact preparations. With more time, activity of the phrenic nerve also declined or ceased. These changes characterize central apnea. The major conclusion is that seizures may result in recurrent periods of obstructive and central apnea. Thus, seizures can adversely alter respiratory function in a profound manner.


Asunto(s)
Apnea/fisiopatología , Muerte Súbita/etiología , Fenómenos Fisiológicos Respiratorios/efectos de los fármacos , Convulsiones/fisiopatología , Anestésicos/farmacología , Animales , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Modelos Animales de Enfermedad , Electroencefalografía , Frecuencia Cardíaca , Nervio Hipogloso/efectos de los fármacos , Nervio Hipogloso/fisiología , Penicilinas , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Ratas , Convulsiones/inducido químicamente , Nervio Vago/efectos de los fármacos , Nervio Vago/fisiología
11.
Respir Physiol Neurobiol ; 152(1): 51-60, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16159713

RESUMEN

The role of gap junctions in the brainstem respiratory control system is ambiguous. In the present study, we used juvenile rats to determine whether blocking gap junctions altered eupnea or gasping in the in situ, arterially perfused rat preparation. Blockade of gap junctions with 100 microM carbenoxolone or 300 microM octanol did not produce any consistent changes in the timing or amplitude of integrated phrenic discharge or in the peak frequency in the power spectrum of phrenic nerve discharge during eupnea or ischemic gasping beyond those changes seen in time-control animals. These findings do not rule out a role for gap junctions in the expression of eupnea or gasping, but they do demonstrate that these intermembrane channels are not obligatory for either rhythm to occur.


Asunto(s)
Uniones Comunicantes/fisiología , Ventilación Pulmonar/fisiología , Mecánica Respiratoria/fisiología , Aldehídos/toxicidad , Animales , Tronco Encefálico/citología , Carbenoxolona/toxicidad , Uniones Comunicantes/efectos de los fármacos , Masculino , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Ventilación Pulmonar/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reflejo/fisiología
12.
J Neurosci Methods ; 147(2): 138-45, 2005 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-15885799

RESUMEN

For a definitive evaluation of the hypothesis that different neurophysiological mechanisms underlie the neurogenesis of eupnea and gasping, long-term continuous intracellular recordings of respiratory neuronal activities during both respiratory patterns are required. Such recordings in vivo are technically difficult, especially in small mammals, due to mechanical instability of the brainstem and cardiovascular depression that accompany hypoxia-induced gasping. Respiratory-related rhythmic activities of in vitro preparations are confounded by the lack of a clear correspondence with both eupnea and gasping. Here, we describe new methodologies and report on whole cell patch clamp recordings from the ventrolateral medulla and the hypoglossal motor nucleus in situ during multiple bouts of hypoxia-induced gasping. The longevity of recordings (range 20--35 min) also allowed subsequent analysis of neuronal behaviour after blockade of inhibitory and excitatory synaptic activities. We conclude that whole cell patch clamp recordings in the in situ preparation will allow an analysis of both synaptic and ionic conductances of respiratory neurons during defined eupnea and gasping, providing an additional approach to in vitro preparations.


Asunto(s)
Hipoventilación/fisiopatología , Bulbo Raquídeo/citología , Potenciales de la Membrana/fisiología , Neuronas/fisiología , Respiración , Transmisión Sináptica/fisiología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Interacciones Farmacológicas , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA , Glicinérgicos/farmacología , Ácido Quinurénico/farmacología , Bulbo Raquídeo/fisiología , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Piperazinas/farmacología , Ratas , Estricnina/farmacología , Transmisión Sináptica/efectos de los fármacos , Factores de Tiempo
13.
Respir Physiol Neurobiol ; 143(2-3): 321-32, 2004 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-15519564

RESUMEN

We have proposed a "switching concept" for the neurogenesis of ventilatory activity. Eupnea reflects the output of a pontomedullary neuronal circuit, whereas gasping is generated by medullary pacemaker mechanisms. Pontile mechanisms, then, are hypothesized to play a fundamental role in the neurogenesis of eupnea. If pontile mechanisms do play such a critical role, several criteria must be fulfilled. First, perturbations of pontile regions must alter eupnea under all experimental conditions. Second, neuronal activities that are consistent with generating the eupneic rhythm must be recorded in pons. Finally, medullary mechanisms alone cannot fully explain the neurogenesis of eupnea. Evidence from previous studies that support the validity of these criteria is presented herein. We conclude that pontile mechanisms play a critical role in the neurogenesis of eupnea.


Asunto(s)
Red Nerviosa/fisiología , Neuronas/fisiología , Puente , Respiración , Sistema Respiratorio/inervación , Animales , Apnea/fisiopatología , Estado de Descerebración , Bulbo Raquídeo/citología , Bulbo Raquídeo/fisiología , Periodicidad , Nervio Frénico/fisiología , Puente/citología , Puente/fisiología
14.
Respir Physiol Neurobiol ; 135(1): 97-101, 2003 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-12706069

RESUMEN

Different neurophysiological mechanisms have been proposed to generate eupnea and gasping. Gasping is generated by neuronal mechanisms intrinsic to the medulla whereas a ponto-medullary neuronal circuit has been hypothesized to generate eupnea. Hence, neurons in the rostral medullary region which are critical for the neurogenesis of gasping are hypothesized to discharge differently in eupnea and gasping. In a perfused in situ preparation of the juvenile rat, these rostral medullary neuronal activities had inspiratory, expiratory and phase-spanning patterns in eupnea. In gasping, most expiratory and phase-spanning activities ceased, whereas many inspiratory neuronal activities changed to a decrementing pattern as that of the phrenic nerve. A limited proportion of neuronal activities acquired a 'pre-inspiratory' discharge in gasping. These neuronal activities, which were inspiratory or phase-spanning in eupnea, commenced discharge in neural expiration. This discharge peaked at the onset of the gasp and then decremented during neural inspiration. We hypothesize that these 'pre-inspiratory' neuronal activities generate the gasp by intrinsic pacemaker mechanisms.


Asunto(s)
Apnea/fisiopatología , Neuronas/fisiología , Nervio Frénico/fisiología , Potenciales de Acción/fisiología , Animales , Diafragma/inervación , Hipoventilación/fisiopatología , Bulbo Raquídeo/fisiología , Microelectrodos , Técnicas de Cultivo de Órganos , Ratas
15.
Respir Physiol Neurobiol ; 132(3): 265-77, 2002 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-12208085

RESUMEN

We evaluated the hypothesis that the neurogenesis of gasping is not dependent upon inhibitory synaptic transmission involving GABA(A) or glycine receptors. Activity of the phrenic nerve was recorded in a perfused juvenile rat preparation. The pattern of phrenic activity was altered from eupnea to gasping in severe hypoxia or ischaemia. To block GABA(A) receptors, bicuculline or picrotoxin was administered. Strychnine was used to block transmission by glycine. Following administrations of bicuculline, picrotoxin or strychnine, the eupneic rhythm was greatly distorted whereas the decrementing pattern of the gasp was maintained. At high concentrations of these antagonists, the frequency of gasps was increased and the peak height of gasps fell. We conclude that the neurogenesis of gasping is not dependent upon fast, chloride-mediated inhibitory synaptic transmission.


Asunto(s)
Inhibición Neural/fisiología , Receptores de GABA-A/fisiología , Receptores de Glicina/fisiología , Respiración , Animales , Bicuculina/farmacología , Relación Dosis-Respuesta a Droga , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Agonistas de Receptores de GABA-A , Antagonistas de Receptores de GABA-A , Glicinérgicos/farmacología , Hipoxia/fisiopatología , Técnicas In Vitro , Muscimol/farmacología , Inhibición Neural/efectos de los fármacos , Perfusión/métodos , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Picrotoxina/farmacología , Ratas , Estadísticas no Paramétricas , Estricnina/farmacología
16.
Respir Physiol Neurobiol ; 133(1-2): 167-71, 2002 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-12385741

RESUMEN

The 'switching model' for generation of respiratory rhythms holds that gasping represents the release of a rostral medullary pacemaker mechanism from the pontomedullary neuronal circuit that generates eupnea. In a perfused preparation of the decerebrate juvenile rat, exposure to ischemia or hypoxic-hypercapnia caused an alteration in integrated phrenic activity from the incrementing pattern of eupnea to the decrementing pattern of gasping. The time required to elicit gasping was not altered by multiple exposures to ischemia or hypoxic-hypercapnia. Furthermore, this time to gasping was not altered following addition to the perfusate of increasing concentrations of bicuculline or picrotoxin; both block GABA(A) receptors. Addition to the perfusate of strychnine, a glycine antagonist, significantly shortened the duration of ischemia or hypoxic-hypercapnia required to elicit gasping. These results support the concept that a loss of inhibitory glycinergic transmission is a critical factor in release of pacemaker mechanisms for gasping from the pontomedullary neuronal circuit for eupnea.


Asunto(s)
Hipoxia , Isquemia , Receptores de Glicina/antagonistas & inhibidores , Respiración , Animales , Antagonistas de Receptores de GABA-A , Hipercapnia/fisiopatología , Hipoxia/fisiopatología , Técnicas In Vitro , Isquemia/fisiopatología , Ratas , Receptores de GABA-A/fisiología , Receptores de Glicina/fisiología , Respiración/efectos de los fármacos , Estricnina/farmacología
17.
Respir Physiol Neurobiol ; 142(2-3): 115-26, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15450474

RESUMEN

During eupnea in an in situ perfused preparation of the rat, inspiratory activities of the hypoglossal and vagal nerves commence before the phrenic; the vagus also discharges in expiration. The hypoglossal discharge has a prominent "pre-inspiratory" component. Power spectral analysis indicated that peak frequencies of oscillations in phrenic, hypoglossal and vagal inspiratory and expiratory activities were the same during eupnea. "Pre-inspiratory" hypoglossal activity had significantly lower peak frequencies. In gasping, "pre-inspiratory" hypoglossal activity ceased and all neural activities became purely inspiratory. High frequency oscillations of phrenic and vagal activities during gasping were shifted upward, compared to those in eupnea, whereas that of the hypoglossal was unaltered. In gasping, the temporal patterns of activities of the phrenic, hypoglossal and vagal nerves, and the level of coherence between these activities implies a restricted and shared set of pre-motor neurons. During eupnea, the activity patterns in the phrenic, hypoglossal and vagal nerves seem to originate from different sets of pre-motor neurons.


Asunto(s)
Espiración/fisiología , Nervio Hipogloso/fisiología , Inhalación/fisiología , Nervio Frénico/fisiología , Nervio Vago/fisiología , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Animales , Dióxido de Carbono/farmacología , Diafragma/inervación , Diafragma/fisiología , Hipercapnia , Hipoxia , Técnicas In Vitro , Perfusión , Ratas , Análisis Espectral/métodos
18.
Respir Physiol Neurobiol ; 139(1): 97-103, 2003 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-14637316

RESUMEN

To describe a pattern of rhythmic activity as "breathing" or "respiration" inevitably leads to the conclusion that this rhythmic activity is "normal" or "eupneic". Initially, it must be noted that, by strictest definition, "eupnea" can only be applied to "breathing" in an unanesthetized preparation. Any experimental perturbation, including anesthesia, changes eupnea, primarily by reducing the frequency of "breathing". However, a "eupneic pattern", in terms of the pattern of airflow of individual breaths, remains. Also remaining are patterns of neural and neuronal activities which are characteristic of individual breaths of eupnea. In this commentary, we consider these patterns of activities, which define a eupneic pattern and contrast these with patterns during apneusis and gasping. It has long been recognized that these three different patterns of "respiratory activity", eupnea, apneusis and gasping, can be generated in preparations in which all of the central nervous system has been removed, exclusive of the brainstem and spinal cord.


Asunto(s)
Tronco Encefálico/fisiología , Ventilación Pulmonar/fisiología , Respiración , Mecánica Respiratoria/fisiología , Animales , Nervios Craneales/fisiología , Disnea/fisiopatología , Ventilación de Alta Frecuencia , Humanos , Técnicas In Vitro , Inhibición Neural , Periodicidad , Nervios Espinales/fisiología , Sinapsis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA