Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(8): 962-971, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36941476

RESUMEN

The complexity of the functional proteome extends considerably beyond the coding genome, resulting in millions of proteoforms. Investigation of proteoforms and their functional roles is important to understand cellular physiology and its deregulation in diseases but challenging to perform systematically. Here we applied thermal proteome profiling with deep peptide coverage to detect functional proteoform groups in acute lymphoblastic leukemia cell lines with different cytogenetic aberrations. We detected 15,846 proteoforms, capturing differently spliced, cleaved and post-translationally modified proteins expressed from 9,290 genes. We identified differential co-aggregation of proteoform pairs and established links to disease biology. Moreover, we systematically made use of measured biophysical proteoform states to find specific biomarkers of drug sensitivity. Our approach, thus, provides a powerful and unique tool for systematic detection and functional annotation of proteoform groups.


Asunto(s)
Proteoma , Espectrometría de Masas en Tándem , Proteoma/metabolismo , Espectrometría de Masas en Tándem/métodos , Línea Celular
2.
Am J Hematol ; 96(5): 580-588, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33625756

RESUMEN

Molecular classification of acute myeloid leukemia (AML) aids prognostic stratification and clinical management. Our aim in this study is to identify transcriptome-wide mRNAs that are specific to each of the molecular subtypes of AML. We analyzed RNA-sequencing data of 955 AML samples from three cohorts, including the BeatAML project, the Cancer Genome Atlas, and a cohort of Swedish patients to provide a comprehensive transcriptome-wide view of subtype-specific mRNA expression. We identified 729 subtype-specific mRNAs, discovered in the BeatAML project and validated in the other two cohorts. Using unique proteomics data, we also validated the presence of subtype-specific mRNAs at the protein level, yielding a rich collection of potential protein-based biomarkers for the AML community. To enable the exploration of subtype-specific mRNA expression by the broader scientific community, we provide an interactive resource to the public.


Asunto(s)
Leucemia Mieloide Aguda/genética , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Transcriptoma , Biomarcadores de Tumor , Genes Relacionados con las Neoplasias , Humanos , Leucemia Mieloide Aguda/clasificación , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Proteínas de Fusión Oncogénica/biosíntesis , Proteínas de Fusión Oncogénica/genética , Proteoma , ARN Mensajero/genética , ARN Neoplásico/genética , RNA-Seq , Estudios Retrospectivos , Suecia
3.
Biochemistry ; 57(11): 1814-1820, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29451388

RESUMEN

Staphylococcus aureus is a major bacterial pathogen that invades and damages host tissue by the expression of devastating toxins. We here performed a phenotypic screen of 35 molecules that were structurally inspired by previous hydroxyamide-based S. aureus virulence inhibitors compiled from commercial sources or designed and synthesized de novo. One of the most potent compounds, AV73, not only reduced hemolytic alpha-hemolysin production in S. aureus but also impeded in vitro biofilm formation. The effect of AV73 on bacterial proteomes and extracellular protein levels was analyzed by quantitative proteomics and revealed a significant down-regulation of major virulence and biofilm promoting proteins. To elucidate the mode of action of AV73, target identification was performed using affinity-based protein profiling (AfBPP), where among others YidC was identified as a target.


Asunto(s)
Adhesinas Bacterianas/biosíntesis , Antibacterianos/farmacología , Toxinas Bacterianas/biosíntesis , Biopelículas/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Staphylococcus aureus , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , Staphylococcus aureus/fisiología
4.
Angew Chem Int Ed Engl ; 57(44): 14602-14607, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30129683

RESUMEN

Caseinolytic protease P (ClpP) is the proteolytic component of the ClpXP protein degradation complex. Eukaryotic ClpP was recently found to act within the mitochondria-specific unfolded protein response (UPRmt ). However, its detailed function and dedicated regulation remain largely unexplored. A small molecule (D9) acts as a potent and species-selective activator of human ClpP (hClpP) by mimicking the natural chaperone ClpX. Structure-activity relationship studies highlight the importance of a halogenated benzyl motif within D9 that interacts with a unique aromatic amino acid network in hClpP. Mutational and structural studies suggest that this YYW motif tightly controls hClpP activity and regulates substrate turnover by interaction with cognate ligands. This signature motif is unique to ClpP from higher organisms and does not exist in tested bacterial homologues, allowing a species-selective analysis. Thus, D9 is a versatile tool to analyze mechanistic features of hClpP.


Asunto(s)
Endopeptidasa Clp/metabolismo , Endopeptidasa Clp/química , Activación Enzimática , Humanos , Relación Estructura-Actividad
5.
J Proteome Res ; 16(3): 1180-1192, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28186774

RESUMEN

ß-Lactones have recently been introduced as the first selective ClpP inhibitors that attenuate virulence of both sensitive Staphylococcus aureus and multiresistant strains (MRSA). Although previous knockout studies showed that ClpP is essential for S. aureus alpha-toxin production, a link between ß-lactone inhibition and molecular virulence mechanisms has been lacking so far. We here perform a chemical-proteomic approach to elucidate antivirulence pathways. First, we demonstrate by gel-free activity-based protein profiling that ClpP is the predominant target of ß-lactones. Only a few off-targets were discovered, which, unlike ClpP, were not involved in the reduction of alpha-toxin expression. Second, in-depth mechanistic insight was provided by a full proteomic comparison between lactone treated and untreated S. aureus cells. Quantitative mass-spectrometric analysis revealed increased repressor of toxin (Rot) levels and a corresponding down-regulation of α-toxin, providing the first direct connection between the lactone-dependent phenotype and a corresponding cellular mechanism. By building up a quantitative virulence regulation network, we visualize the impact of ClpP inhibition in a systems biology context. Interestingly, a lack of in vitro Rot degradation by either ClpXP or ClpCP calls either for a proteolysis mechanism with yet unknown adaptor proteins or for an indirect mode of action that may involve ClpX-mediated RNA signaling and feedback circuits.


Asunto(s)
Lactonas/farmacología , Staphylococcus aureus/patogenicidad , Virulencia/efectos de los fármacos , Proteínas Bacterianas/análisis , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Endopeptidasa Clp/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteómica , Proteínas Represoras/análisis , Biología de Sistemas
6.
Angew Chem Int Ed Engl ; 56(5): 1396-1401, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-27981680

RESUMEN

Affinity-based protein profiling (AfBPP) is a widely applied method for the target identification of bioactive molecules. Probes containing photocrosslinkers, such as benzophenones, diazirines, and aryl azides, irreversibly link the molecule of interest to its target protein upon irradiation with UV light. Despite their prevalent application, little is known about photocrosslinker-specific off-targets, affecting the reliability of results. Herein, we investigated background protein labeling by gel-free quantitative proteomics. Characteristic off-targets were identified for each photoreactive group and compiled in a comprehensive inventory. In a proof-of-principle study, H8, a protein kinase A inhibitor, was equipped with a diazirine moiety. Application of this photoprobe revealed, by alignment with the diazirine background, unprecedented insight into its in situ proteome targets. Taken together, our findings guide the identification of biologically relevant binders in photoprobe experiments.

7.
Eur J Clin Pharmacol ; 71(9): 1083-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26105964

RESUMEN

PURPOSE: Adjusted indirect comparisons can be used to investigate bioequivalence between generic products that are bioequivalent with a common reference product. In previous work with generic tuberculosis medicines prequalified by the WHO, it was observed that although indirect comparisons are an effective approach for confirming the interchangeability of generics, the approach is subject to less precision than direct comparisons. The objective of this investigation was to explore this by examining the influence of point estimates and power of bioequivalence studies versus the reference on the ability to show equivalence in indirect comparisons. METHODS: Power was considered as a determining factor instead of variability and sample size, because sample size is calculated based on variability and desired power. Scenarios were computed combining a range of point estimate differences (0-14 %) and statistical power of the studies (50-99.99 %). RESULTS: The indirect comparisons could conclude equivalence between generics only when (a) point estimate differences between generics were low (≤ 5.5 %) for any sufficiently powered study (> 80 %), or (b) the differences were large (but less than 14 %) and both bioequivalence studies were overpowered (e.g., 10 % difference and power ≥ 95 %). CONCLUSIONS: In summary, the ability to demonstrate interchangeability between generics is dependent not only on the real differences between the products but also on the design of the original generic vs. reference bioequivalence studies being combined, as earmarked by their respective power.


Asunto(s)
Medicamentos Genéricos , Equivalencia Terapéutica , Simulación por Computador , Medicamentos Genéricos/farmacología , Medicamentos Genéricos/normas , Humanos , Estándares de Referencia , Tamaño de la Muestra
8.
N Engl J Med ; 364(20): 1920-31, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21591944

RESUMEN

BACKGROUND: Oxygen free radicals and cytokines play a pathogenic role in Graves' orbitopathy. METHODS: We carried out a randomized, double-blind, placebo-controlled trial to determine the effect of selenium (an antioxidant agent) or pentoxifylline (an antiinflammatory agent) in 159 patients with mild Graves' orbitopathy. The patients were given selenium (100 µg twice daily), pentoxifylline (600 mg twice daily), or placebo (twice daily) orally for 6 months and were then followed for 6 months after treatment was withdrawn. Primary outcomes at 6 months were evaluated by means of an overall ophthalmic assessment, conducted by an ophthalmologist who was unaware of the treatment assignments, and a Graves' orbitopathy-specific quality-of-life questionnaire, completed by the patient. Secondary outcomes were evaluated with the use of a Clinical Activity Score and a diplopia score. RESULTS: At the 6-month evaluation, treatment with selenium, but not with pentoxifylline, was associated with an improved quality of life (P<0.001) and less eye involvement (P=0.01) and slowed the progression of Graves' orbitopathy (P=0.01), as compared with placebo. The Clinical Activity Score decreased in all groups, but the change was significantly greater in the selenium-treated patients. Exploratory evaluations at 12 months confirmed the results seen at 6 months. Two patients assigned to placebo and one assigned to pentoxifylline required immunosuppressive therapy for deterioration in their condition. No adverse events were evident with selenium, whereas pentoxifylline was associated with frequent gastrointestinal problems. CONCLUSIONS: Selenium administration significantly improved quality of life, reduced ocular involvement, and slowed progression of the disease in patients with mild Graves' orbitopathy. (Funded by the University of Pisa and the Italian Ministry for Education, University and Research; EUGOGO Netherlands Trial Register number, NTR524.).


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Oftalmopatía de Graves/tratamiento farmacológico , Pentoxifilina/uso terapéutico , Calidad de Vida , Selenio/uso terapéutico , Adulto , Antiinflamatorios/efectos adversos , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Humanos , Masculino , Pentoxifilina/efectos adversos
9.
J Pharm Pharm Sci ; 17(2): 169-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24934546

RESUMEN

PURPOSE: The aim of this work was to determine the number and type of active pharmaceutical ingredient (API) quality deficiencies in API Master Files (APIMFs) as submitted to the World Health Organization (WHO) Prequalification of Medicines Programme (PQP). METHODS: We conducted a retrospective review of API quality deficiencies identified following the assessment of new APIMFs for non-sterile APIs during a 6-year period from 1 January 2007 to 31 December 2012. All deficiencies were collected, classified and quantified according to the Common Technical Document (CTD) sections and subsections and as groups of commonly raised questions. RESULTS: There were 5446 deficiencies collected from 159 APIMF deficiency letters by CTD section, by selected CTD subsections and by selected CTD subsections and year. More than 50% of the total number of deficiencies related to the manufacturing sections of the CTD, followed by deficiencies concerning the impurities, the API specification and the stability sections of the CTD. A pattern of API deficiencies across the different CTD subsections and over time was identified. CONCLUSIONS: The most frequent critical deficiencies were related to how the specific manufacturing process and the key materials used, in particular the API starting material, impact the API impurities content. The number and pattern of APIMF deficiencies did not change over time. The results are compared to the findings in similar studies as reported by the United States Food and Drug Administration (USFDA), the European Directorate for the Quality of Medicines (EDQM) and the European Medicines Agency (EMA) and similarities and differences are discussed. Our findings highlight the need for greater guidance and technical assistance for API manufacturers submitting APIMFs to the PQP.


Asunto(s)
Documentación , Preparaciones Farmacéuticas , Organización Mundial de la Salud , Control de Calidad
10.
BMC Infect Dis ; 13: 577, 2013 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-24314015

RESUMEN

BACKGROUND: Osteoporosis and bone fractures seem to be higher in HIV-infected Patients compared to the general populations. Moreover, bone turnover markers are increased in patients on antiretroviral therapy and vitamin D deficiency is prevalent in HIV-infected patients. However, the influence of per oral cholecalciferol on bone metabolism in HIV infected patients is not well understood. METHODS: We measured the bone turnover markers in 96 HIV-infected patients: Bone specific alkaline phosphatase (BSAP), Pyridinoline (PYR), Desoxypyridinoline (DPD) and 25-OH vitamin D. If 25-OH vitamin D was below 75 nnol/L (87/96 patients), 300000 IU cholecalciferol was given per os. 25OH-vitamin D and bone turn over markers were determinded 3 month later. 25 OH-vitamin D was corrected for circannual rythm y'=y+17.875*sin2π/365*day+2.06, whereas bone turnover markers were not corrected. The paired students t-Test was used to compare the two periods. No calcium supplementation or biphosphonate therapy was given. RESULTS: Corrected 25OH-vitamin D levels increased significantly after supplementation (42.7 ± 26.61 vs. 52.85 ± 21.8 nmol/L, p < 0.001). After supplementation, bone turnover markers were significantly lower. The values decreased for BSAP from 21.31 ± 14.32 to 17.53 ± 8.17 µg/L (p < 0.001), PYR from 74.57 ± 36.83 to 54.82 ± 21.43 nmol/mmol creatinine (p < 0.001) and DPD from 15.17 ± 8.34 to 12.61 ± 5.02 nmol/mmol creatinine (p = 0.01). CONCLUSIONS: After per oral substitution with cholecalciferol, bone formation as well as bone resorption markers decreased significant. We postulate a protective effect on bone structure with cholecalciferol supplementation.


Asunto(s)
Resorción Ósea/tratamiento farmacológico , Colecalciferol/administración & dosificación , Infecciones por VIH/metabolismo , Administración Oral , Aminoácidos/sangre , Biomarcadores/sangre , Resorción Ósea/sangre , Resorción Ósea/metabolismo , Calcifediol/sangre , Femenino , Infecciones por VIH/sangre , Humanos , Masculino , Persona de Mediana Edad , Deficiencia de Vitamina D/sangre , Deficiencia de Vitamina D/tratamiento farmacológico , Deficiencia de Vitamina D/metabolismo
11.
Eur J Clin Pharmacol ; 68(12): 1611-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23011014

RESUMEN

PURPOSE: The objective of this study was to compare different methods of adjusted indirect comparisons that can be used to investigate the relative bioavailability of different generic products. To achieve this goal, generic artemether/lumefantrine 20/120 mg tablets that have been prequalified by the World Health Organization (WHO) were selected as model products for study. METHODS: Data from three bioequivalence studies conducted independently that compared three generics with the same reference product were used to indirectly determine the relative bioavailability between the generics themselves. RESULTS: The different methods of indirect comparison examined in this study provide consistent results. Methods based on the assumption of a large sample size give slightly narrower 90 % confidence intervals. Therefore, the use of methods based on the t test is recommended. Given the precision of the area under the time-concentration curve (AUC) data, it is possible to conclude that the extent of exposure of artemether and lumefantrine is bioequivalent between the different generics studied. However, given the precision of the drug peak concentration (C(max)) data, it is not possible to demonstrate equivalence within the conventional acceptance range for all comparisons; it is possible to conclude bioequivalence within the widened acceptance range 75-133 %. CONCLUSIONS: From a clinical viewpoint, not only are these prequalified generics bioequivalent and interchangeable with the reference product (Coartem, Novartis), but also the existing indirect evidence makes it possible to conclude that these WHO prequalified products are bioequivalent between themselves with respect to the AUC. The lack of the necessary precision to demonstrate bioequivalence between generics with respect to the C(max) within the conventional acceptance range does not preclude considering them as interchangeable, if necessary, since C(max) is considered to be of less clinical relevance for the relevant therapy.


Asunto(s)
Antimaláricos/farmacocinética , Artemisininas/farmacocinética , Medicamentos Genéricos/farmacocinética , Etanolaminas/farmacocinética , Fluorenos/farmacocinética , Adulto , Área Bajo la Curva , Arteméter , Disponibilidad Biológica , Estudios Cruzados , Interpretación Estadística de Datos , Humanos , Lumefantrina , Masculino , Equivalencia Terapéutica
12.
Nat Commun ; 13(1): 1691, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354797

RESUMEN

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Although standard-of-care chemotherapeutics are sufficient for most ALL cases, there are subsets of patients with poor response who relapse in disease. The biology underlying differences between subtypes and their response to therapy has only partially been explained by genetic and transcriptomic profiling. Here, we perform comprehensive multi-omic analyses of 49 readily available childhood ALL cell lines, using proteomics, transcriptomics, and pharmacoproteomic characterization. We connect the molecular phenotypes with drug responses to 528 oncology drugs, identifying drug correlations as well as lineage-dependent correlations. We also identify the diacylglycerol-analog bryostatin-1 as a therapeutic candidate in the MEF2D-HNRNPUL1 fusion high-risk subtype, for which this drug activates pro-apoptotic ERK signaling associated with molecular mediators of pre-B cell negative selection. Our data is the foundation for the interactive online Functional Omics Resource of ALL (FORALL) with navigable proteomics, transcriptomics, and drug sensitivity profiles at https://proteomics.se/forall .


Asunto(s)
Perfilación de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células Precursoras , Línea Celular , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteómica , Transcriptoma
13.
Nat Commun ; 13(1): 6226, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266272

RESUMEN

Cancer heterogeneity at the proteome level may explain differences in therapy response and prognosis beyond the currently established genomic and transcriptomic-based diagnostics. The relevance of proteomics for disease classifications remains to be established in clinically heterogeneous cancer entities such as chronic lymphocytic leukemia (CLL). Here, we characterize the proteome and transcriptome alongside genetic and ex-vivo drug response profiling in a clinically annotated CLL discovery cohort (n = 68). Unsupervised clustering of the proteome data reveals six subgroups. Five of these proteomic groups are associated with genetic features, while one group is only detectable at the proteome level. This new group is characterized by accelerated disease progression, high spliceosomal protein abundances associated with aberrant splicing, and low B cell receptor signaling protein abundances (ASB-CLL). Classifiers developed to identify ASB-CLL based on its characteristic proteome or splicing signature in two independent cohorts (n = 165, n = 169) confirm that ASB-CLL comprises about 20% of CLL patients. The inferior overall survival in ASB-CLL is also independent of both TP53- and IGHV mutation status. Our multi-omics analysis refines the classification of CLL and highlights the potential of proteomics to improve cancer patient stratification beyond genetic and transcriptomic profiling.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Proteogenómica , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteómica , Proteoma/genética , Mutación , Receptores de Antígenos de Linfocitos B/metabolismo
14.
Nat Commun ; 12(1): 460, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469029

RESUMEN

Legionella pneumophila infects eukaryotic cells by forming a replicative organelle - the Legionella containing vacuole. During this process, the bacterial protein DrrA/SidM is secreted and manipulates the activity and post-translational modification (PTM) states of the vesicular trafficking regulator Rab1. As a result, Rab1 is modified with an adenosine monophosphate (AMP), and this process is referred to as AMPylation. Here, we use a chemical approach to stabilise low-affinity Rab:DrrA complexes in a site-specific manner to gain insight into the molecular basis of the interaction between the Rab protein and the AMPylation domain of DrrA. The crystal structure of the Rab:DrrA complex reveals a previously unknown non-conventional Rab-binding site (NC-RBS). Biochemical characterisation demonstrates allosteric stimulation of the AMPylation activity of DrrA via Rab binding to the NC-RBS. We speculate that allosteric control of DrrA could in principle prevent random and potentially cytotoxic AMPylation in the host, thereby perhaps ensuring efficient infection by Legionella.


Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/patología , Proteínas de Unión al GTP rab1/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Sitios de Unión/genética , Cristalografía por Rayos X , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/aislamiento & purificación , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Guanosina Trifosfato/metabolismo , Humanos , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Fagocitosis , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/aislamiento & purificación , Proteínas de Unión al GTP rab1/ultraestructura
15.
Sci Rep ; 11(1): 11185, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34045646

RESUMEN

The human mitochondrial ClpXP protease complex (HsClpXP) has recently attracted major attention as a target for novel anti-cancer therapies. Despite its important role in disease progression, the cellular role of HsClpXP is poorly characterized and only few small molecule inhibitors have been reported. Herein, we screened previously established S. aureus ClpXP inhibitors against the related human protease complex and identified potent small molecules against human ClpXP. The hit compounds showed anti-cancer activity in a panoply of leukemia, liver and breast cancer cell lines. We found that the bacterial ClpXP inhibitor 334 impairs the electron transport chain (ETC), enhances the production of mitochondrial reactive oxygen species (mtROS) and thereby promotes protein carbonylation, aberrant proteostasis and apoptosis. In addition, 334 induces cell death in re-isolated patient-derived xenograft (PDX) leukemia cells, potentiates the effect of DNA-damaging cytostatics and re-sensitizes resistant cancers to chemotherapy in non-apoptotic doses.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Mitocondriales/antagonistas & inhibidores , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Staphylococcus aureus
16.
Nat Commun ; 10(1): 1908, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000714

RESUMEN

The original version of this Article contained errors in Fig. 1 and Supplementary Fig. 3. In Fig. 1, the labels indicating the Cx32wt constructs in panels d and e were incorrectly shifted with respect to the relevant western blot lanes. In Supplementary Fig. 3, numbers of unique peptides and % sequence coverage were incorrectly reported as being for wt and L90H separately, and should refer to wt and L90H combined. These errors have been corrected in the PDF and HTML versions of the Article.

17.
Nat Commun ; 10(1): 672, 2019 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-30737405

RESUMEN

A fundamental step in membrane protein biogenesis is their integration into the lipid bilayer with a defined orientation of each transmembrane segment. Despite this, it remains unclear how cells detect and handle failures in this process. Here we show that single point mutations in the membrane protein connexin 32 (Cx32), which cause Charcot-Marie-Tooth disease, can cause failures in membrane integration. This leads to Cx32 transport defects and rapid degradation. Our data show that multiple chaperones detect and remedy this aberrant behavior: the ER-membrane complex (EMC) aids in membrane integration of low-hydrophobicity transmembrane segments. If they fail to integrate, these are recognized by the ER-lumenal chaperone BiP. Ultimately, the E3 ligase gp78 ubiquitinates Cx32 proteins, targeting them for degradation. Thus, cells use a coordinated system of chaperones for the complex task of membrane protein biogenesis, which can be compromised by single point mutations, causing human disease.


Asunto(s)
Membrana Dobles de Lípidos/metabolismo , Chaperonas Moleculares/metabolismo , Animales , Células COS , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Chlorocebus aethiops , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Chaperón BiP del Retículo Endoplásmico , Uniones Comunicantes/metabolismo , Células HEK293 , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/genética , Mutación , Proteína beta1 de Unión Comunicante
18.
Drug Healthc Patient Saf ; 10: 69-77, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050329

RESUMEN

OBJECTIVE: Few studies have examined associations between patient knowledge of direct oral anticoagulants (DOAC) and clinical outcomes, mostly because of the lack of validated questionnaires for assessing knowledge. The aim of this study was to develop and validate a questionnaire to self-assess knowledge of DOAC. METHODS: Twelve anticoagulation experts participated in the questionnaire development process to ensure content validity. The Knowledge Of Direct Oral Anticoagulants (KODOA)-test was submitted to patients on DOAC and to pharmacists to assess construct validity. Responsiveness was evaluated after educational counseling. Test-retest reliability was assessed to ensure stability over time, and Cronbach's α was calculated for internal reliability. Index of difficulty and item discrimination (D-value) were calculated to assess the performance of single items. RESULTS: The KODOA-test contains 15 items with multiple-choice answers. Each correct answer scores 1 point (max. score of 15). The KODOA-test was administered to 32 patients on DOAC and 28 pharmacists. Pharmacists scored significantly higher than patients at baseline (median score 13.3 vs 10.0; p<0.001), supporting construct validity. Patient scores increased significantly after educational counseling (median score 11 [interquartile range 2] vs 14 [interquartile range 3]; p<0.001). Test-retest and Cronbach's α were acceptable with a Pearson's correlation of 0.8 and an α of 0.67. The index of difficulty for most items was satisfactory (0.38-0.72) and the mean D-value was 42.5%. CONCLUSION: The KODOA-test is a brief, valid, and reliable knowledge self-assessment questionnaire that may be used in clinical trials to investigate associations between knowledge increase and patient-related outcomes.

19.
Nat Chem ; 10(12): 1234-1245, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30297752

RESUMEN

Pyridoxal phosphate (PLP) is an enzyme cofactor required for the chemical transformation of biological amines in many central cellular processes. PLP-dependent enzymes (PLP-DEs) are ubiquitous and evolutionarily diverse, making their classification based on sequence homology challenging. Here we present a chemical proteomic method for reporting on PLP-DEs using functionalized cofactor probes. We synthesized pyridoxal analogues modified at the 2'-position, which are taken up by cells and metabolized in situ. These pyridoxal analogues are phosphorylated to functional cofactor surrogates by cellular pyridoxal kinases and bind to PLP-DEs via an aldimine bond which can be rendered irreversible by NaBH4 reduction. Conjugation to a reporter tag enables the subsequent identification of PLP-DEs using quantitative, label-free mass spectrometry. Using these probes we accessed a significant portion of the Staphylococcus aureus PLP-DE proteome (73%) and annotate uncharacterized proteins as novel PLP-DEs. We also show that this approach can be used to study structural tolerance within PLP-DE active sites and to screen for off-targets of the PLP-DE inhibitor D-cycloserine.


Asunto(s)
Alanina Racemasa/metabolismo , Coenzimas/química , Coenzimas/metabolismo , Dopa-Decarboxilasa/metabolismo , Glicina Hidroximetiltransferasa/metabolismo , Ornitina Descarboxilasa/metabolismo , Fosfato de Piridoxal/metabolismo , Transaminasas/metabolismo , Alanina Racemasa/química , Dopa-Decarboxilasa/química , Glicina Hidroximetiltransferasa/química , Cinética , Modelos Moleculares , Estructura Molecular , Ornitina Descarboxilasa/química , Fosforilación , Fosfato de Piridoxal/química , Transaminasas/química
20.
Curr Opin Chem Biol ; 40: 102-110, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28910721

RESUMEN

Maintaining the cellular protein homeostasis means managing life on the brink of death. This balance is largely based on precise fine-tuning of enzyme activities. For instance, the ClpP protease possesses several conformational switches which are fundamental to regulating its activity. Efforts have focused on revealing the structural basis of ClpP's conformational control. In the last decade, several amino acid clusters have been identified and functionally linked to specific activation states. Researchers have now begun to couple these hotspots to one another, uncovering a global network of residues that switch in response to internal and external stimuli. For these studies, they used small molecules to mimic intermolecular interactions and point-mutational studies to shortcut regulating amino acid circuits.


Asunto(s)
Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Adenosina Trifosfato/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Humanos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformación Proteica , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA