Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(11): e2215376120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897988

RESUMEN

The Siglecs (sialic acid-binding immunoglobulin-like lectins) are glycoimmune checkpoint receptors that suppress immune cell activation upon engagement of cognate sialoglycan ligands. The cellular drivers underlying Siglec ligand production on cancer cells are poorly understood. We find the MYC oncogene causally regulates Siglec ligand production to enable tumor immune evasion. A combination of glycomics and RNA-sequencing of mouse tumors revealed the MYC oncogene controls expression of the sialyltransferase St6galnac4 and induces a glycan known as disialyl-T. Using in vivo models and primary human leukemias, we find that disialyl-T functions as a "don't eat me" signal by engaging macrophage Siglec-E in mice or the human ortholog Siglec-7, thereby preventing cancer cell clearance. Combined high expression of MYC and ST6GALNAC4 identifies patients with high-risk cancers and reduced tumor myeloid infiltration. MYC therefore regulates glycosylation to enable tumor immune evasion. We conclude that disialyl-T is a glycoimmune checkpoint ligand. Thus, disialyl-T is a candidate for antibody-based checkpoint blockade, and the disialyl-T synthase ST6GALNAC4 is a potential enzyme target for small molecule-mediated immune therapy.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas c-myc , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Ligandos , Macrófagos/metabolismo , Neoplasias/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
J Biol Chem ; 300(2): 105579, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141764

RESUMEN

Siglec-7 (sialic acid-binding immunoglobulin-like lectin 7) is a glycan-binding immune receptor that is emerging as a significant target of interest for cancer immunotherapy. The physiological ligands that bind Siglec-7, however, remain incompletely defined. In this study, we characterized the expression of Siglec-7 ligands on peripheral immune cell subsets and assessed whether Siglec-7 functionally regulates interactions between immune cells. We found that disialyl core 1 O-glycans are the major immune ligands for Siglec-7 and that these ligands are particularly highly expressed on naïve T-cells. Densely glycosylated sialomucins are the primary carriers of these glycans, in particular a glycoform of the cell-surface marker CD43. Biosynthesis of Siglec-7-binding glycans is dynamically controlled on different immune cell subsets through a genetic circuit involving the glycosyltransferase GCNT1. Siglec-7 blockade was found to increase activation of both primary T-cells and antigen-presenting dendritic cells in vitro, indicating that Siglec-7 binds T-cell glycans to regulate intraimmune signaling. Finally, we present evidence that Siglec-7 directly activates signaling pathways in T-cells, suggesting a new biological function for this receptor. These studies conclusively demonstrate the existence of a novel Siglec-7-mediated signaling axis that physiologically regulates T-cell activity. Going forward, our findings have significant implications for the design and implementation of therapies targeting immunoregulatory Siglec receptors.


Asunto(s)
Antígenos de Diferenciación Mielomonocítica , Ligandos , Activación de Linfocitos , Linfocitos T , Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/inmunología , Polaridad Celular/genética , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Transducción de Señal , Linfocitos T/inmunología , Humanos
3.
Biotechnol Bioeng ; 115(3): 739-750, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29178580

RESUMEN

Protein glycosylation, or the attachment of sugar moieties (glycans) to proteins, is important for protein stability, activity, and immunogenicity. However, understanding the roles and regulations of site-specific glycosylation events remains a significant challenge due to several technological limitations. These limitations include a lack of available tools for biochemical characterization of enzymes involved in glycosylation. A particular challenge is the synthesis of oligosaccharyltransferases (OSTs), which catalyze the attachment of glycans to specific amino acid residues in target proteins. The difficulty arises from the fact that canonical OSTs are large (>70 kDa) and possess multiple transmembrane helices, making them difficult to overexpress in living cells. Here, we address this challenge by establishing a bacterial cell-free protein synthesis platform that enables rapid production of a variety of OSTs in their active conformations. Specifically, by using lipid nanodiscs as cellular membrane mimics, we obtained yields of up to 420 µg/ml for the single-subunit OST enzyme, "Protein glycosylation B" (PglB) from Campylobacter jejuni, as well as for three additional PglB homologs from Campylobacter coli, Campylobacter lari, and Desulfovibrio gigas. Importantly, all of these enzymes catalyzed N-glycosylation reactions in vitro with no purification or processing needed. Furthermore, we demonstrate the ability of cell-free synthesized OSTs to glycosylate multiple target proteins with varying N-glycosylation acceptor sequons. We anticipate that this broadly applicable production method will advance glycoengineering efforts by enabling preparative expression of membrane-embedded OSTs from all kingdoms of life.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Campylobacter/enzimología , Desulfovibrio/enzimología , Glicosiltransferasas/biosíntesis , Proteínas Bacterianas/genética , Campylobacter/genética , Sistema Libre de Células/metabolismo , Desulfovibrio/genética , Glicosilación
4.
Nat Protoc ; 18(7): 2374-2398, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37328605

RESUMEN

The advent of distributed biomanufacturing platforms promises to increase agility in biologic production and expand access by reducing reliance on refrigerated supply chains. However, such platforms are not capable of robustly producing glycoproteins, which represent the majority of biologics approved or in development. To address this limitation, we developed cell-free technologies that enable rapid, modular production of glycoprotein therapeutics and vaccines from freeze-dried Escherichia coli cell lysates. Here, we describe a protocol for generation of cell-free lysates and freeze-dried reactions for on-demand synthesis of desired glycoproteins. The protocol includes construction and culture of the bacterial chassis strain, cell-free lysate production, assembly of freeze-dried reactions, cell-free glycoprotein synthesis, and glycoprotein characterization, all of which can be completed in one week or less. We anticipate that cell-free technologies, along with this comprehensive user manual, will help accelerate development and distribution of glycoprotein therapeutics and vaccines.


Asunto(s)
Escherichia coli , Vacunas , Escherichia coli/genética , Glicoproteínas , Vacunas/uso terapéutico , Biosíntesis de Proteínas , Bacterias
5.
Methods Mol Biol ; 2433: 413-432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34985759

RESUMEN

Active, hands-on learning has been shown to improve educational outcomes in STEM subjects. However, implementation of hands-on activities for teaching biology has lagged behind other science disciplines due to challenges associated with the use of living cells. To address this limitation, we developed BioBits®: biology education activities enabled by freeze-dried cell-free reactions that can be activated by just adding water. Here, we describe detailed protocols for labs designed to teach the central dogma, biomaterial formation, an important mechanism of antibiotic resistance, and CRISPR-Cas9 gene editing via cell-free synthesis of proteins with visual outputs. The activities described are designed for a range of educational levels and time/resource requirements, so that educators can select the demonstrations that best fit their needs. We anticipate that the availability of BioBits® activities will enhance biology instruction by enabling hands-on learning in a variety of educational settings.


Asunto(s)
Edición Génica , Biología Sintética , Sistemas CRISPR-Cas , Humanos , Aprendizaje , Tecnología
6.
Blood Adv ; 6(11): 3352-3366, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35294519

RESUMEN

Abnormal glycosylation is a hallmark of cancer, and the hypersialylated tumor cell surface facilitates abnormal cell trafficking and drug resistance in several malignancies, including multiple myeloma (MM). Furthermore, hypersialylation has also been implicated in facilitating evasion of natural killer (NK) cell-mediated immunosurveillance but not in MM to date. In this study, we explore the role of hypersialylation in promoting escape from NK cells. We document strong expression of sialic acid-derived ligands for Siglec-7 (Siglec-7L) on primary MM cells and MM cell lines, highlighting the possibility of Siglec-7/Siglec-7L interactions in the tumor microenvironment. Interactomics experiments in MM cell lysates revealed PSGL-1 as the predominant Siglec-7L in MM. We show that desialylation, using both a sialidase and sialyltransferase inhibitor (SIA), strongly enhances NK cell-mediated cytotoxicity against MM cells. Furthermore, MM cell desialylation results in increased detection of CD38, a well-validated target in MM. Desialylation enhanced NK cell cytotoxicity against CD38+ MM cells after treatment with the anti-CD38 monoclonal antibody daratumumab. Additionally, we show that MM cells with low CD38 expression can be treated with all trans-retinoic acid (ATRA), SIA and daratumumab to elicit a potent NK cell cytotoxic response. Finally, we demonstrate that Siglec-7KO potentiates NK cell cytotoxicity against Siglec-7L+ MM cells. Taken together, our work shows that desialylation of MM cells is a promising novel approach to enhance NK cell efficacy against MM, which can be combined with frontline therapies to elicit a potent anti-MM response.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Humanos , Células Asesinas Naturales , Mieloma Múltiple/tratamiento farmacológico , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/uso terapéutico , Microambiente Tumoral
7.
Nat Genet ; 54(8): 1078-1089, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a range of symptoms in infected individuals, from mild respiratory illness to acute respiratory distress syndrome. A systematic understanding of host factors influencing viral infection is critical to elucidate SARS-CoV-2-host interactions and the progression of Coronavirus disease 2019 (COVID-19). Here, we conducted genome-wide CRISPR knockout and activation screens in human lung epithelial cells with endogenous expression of the SARS-CoV-2 entry factors ACE2 and TMPRSS2. We uncovered proviral and antiviral factors across highly interconnected host pathways, including clathrin transport, inflammatory signaling, cell-cycle regulation, and transcriptional and epigenetic regulation. We further identified mucins, a family of high molecular weight glycoproteins, as a prominent viral restriction network that inhibits SARS-CoV-2 infection in vitro and in murine models. These mucins also inhibit infection of diverse respiratory viruses. This functional landscape of SARS-CoV-2 host factors provides a physiologically relevant starting point for new host-directed therapeutics and highlights airway mucins as a host defense mechanism.


Asunto(s)
COVID-19 , Animales , COVID-19/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Epigénesis Genética , Humanos , Ratones , Mucinas/genética , SARS-CoV-2
8.
ACS Cent Sci ; 7(4): 650-657, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-34056095

RESUMEN

Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-CoV-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate signaling of the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19.

9.
Sci Adv ; 7(6)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536221

RESUMEN

Conjugate vaccines are among the most effective methods for preventing bacterial infections. However, existing manufacturing approaches limit access to conjugate vaccines due to centralized production and cold chain distribution requirements. To address these limitations, we developed a modular technology for in vitro conjugate vaccine expression (iVAX) in portable, freeze-dried lysates from detoxified, nonpathogenic Escherichia coli. Upon rehydration, iVAX reactions synthesize clinically relevant doses of conjugate vaccines against diverse bacterial pathogens in 1 hour. We show that iVAX-synthesized vaccines against Francisella tularensis subsp. tularensis (type A) strain Schu S4 protected mice from lethal intranasal F. tularensis challenge. The iVAX platform promises to accelerate development of new conjugate vaccines with increased access through refrigeration-independent distribution and portable production.

10.
ChemRxiv ; 2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33469569

RESUMEN

Severe cases of coronavirus disease 2019 (COVID-19), caused by infection with SARS-Cov-2, are characterized by a hyperinflammatory immune response that leads to numerous complications. Production of proinflammatory neutrophil extracellular traps (NETs) has been suggested to be a key factor in inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of neutrophil activation and NETosis, the cell death pathway accompanying NET formation, could limit respiratory damage and death from severe COVID-19. Here, we demonstrate that synthetic glycopolymers that activate the neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic strategy to curb neutrophilic hyperinflammation in COVID-19.
.

11.
Nat Commun ; 10(1): 5404, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776339

RESUMEN

Glycosylation plays important roles in cellular function and endows protein therapeutics with beneficial properties. However, constructing biosynthetic pathways to study and engineer precise glycan structures on proteins remains a bottleneck. Here, we report a modular, versatile cell-free platform for glycosylation pathway assembly by rapid in vitro mixing and expression (GlycoPRIME). In GlycoPRIME, glycosylation pathways are assembled by mixing-and-matching cell-free synthesized glycosyltransferases that can elaborate a glucose primer installed onto protein targets by an N-glycosyltransferase. We demonstrate GlycoPRIME by constructing 37 putative protein glycosylation pathways, creating 23 unique glycan motifs, 18 of which have not yet been synthesized on proteins. We use selected pathways to synthesize a protein vaccine candidate with an α-galactose adjuvant motif in a one-pot cell-free system and human antibody constant regions with minimal sialic acid motifs in glycoengineered Escherichia coli. We anticipate that these methods and pathways will facilitate glycoscience and make possible new glycoengineering applications.


Asunto(s)
Sistema Libre de Células/metabolismo , Ingeniería de Proteínas/métodos , Proteínas/metabolismo , Antígenos CD/metabolismo , Escherichia coli/genética , Glicoproteínas/biosíntesis , Glicosilación , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Humanos , Redes y Vías Metabólicas , Oligosacáridos/metabolismo , Polisacáridos/metabolismo , Proteínas/genética , Ácidos Siálicos/química , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo
12.
ACS Synth Biol ; 8(5): 1001-1009, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-30925042

RESUMEN

Recent advances in synthetic biology have resulted in biological technologies with the potential to reshape the way we understand and treat human disease. Educating students about the biology and ethics underpinning these technologies is critical to empower them to make informed future policy decisions regarding their use and to inspire the next generation of synthetic biologists. However, hands-on, educational activities that convey emerging synthetic biology topics can be difficult to implement due to the expensive equipment and expertise required to grow living cells. We present BioBits Health, an educational kit containing lab activities and supporting curricula for teaching antibiotic resistance mechanisms and CRISPR-Cas9 gene editing in high school classrooms. This kit links complex biological concepts to visual, fluorescent readouts in user-friendly freeze-dried cell-free reactions. BioBits Health represents a set of educational resources that promises to encourage teaching of cutting-edge, health-related synthetic biology topics in classrooms and other nonlaboratory settings.


Asunto(s)
Ingeniería Genética , Biología Sintética/educación , Sistemas CRISPR-Cas/genética , Sistema Libre de Células , Farmacorresistencia Microbiana/genética , Edición Génica/métodos , Transferencia de Gen Horizontal , Humanos , Imagen Óptica , Biología Sintética/métodos
13.
J Vis Exp ; (132)2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29553508

RESUMEN

Microglia, the resident immune cells in the brain, are the first responders to inflammation or injury in the central nervous system. Recent research has revealed microglia to be dynamic, capable of assuming both pro-inflammatory and anti-inflammatory phenotypes. Both M1 (pro-inflammatory) and M2 (pro-reparative) phenotypes play an important role in neuroinflammatory conditions such as perinatal brain injury, and exhibit differing functions in response to certain environmental stimuli. The modulation of microglial activation has been noted to confer neuroprotection thus suggesting microglia may have therapeutic potential in brain injury. However, more research is required to better understand the role of microglia in disease, and this protocol facilitates that. The protocol described below combines a density gradient centrifugation process to reduce cellular debris, with magnetic separation, producing a highly pure sample of primary microglial cells that can be used for in vitro experimentation, without the need for 2-3 weeks culturing. Additionally, the characterization steps yield robust functional data about microglia, aiding studies to better our understanding of the polarization and priming of these cells, which has strong implications in the field of regenerative medicine.


Asunto(s)
Encéfalo/metabolismo , Centrifugación por Gradiente de Densidad/métodos , Microglía/metabolismo , Animales , Encéfalo/citología , Ratones
14.
Nat Commun ; 9(1): 3396, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127449

RESUMEN

The original version of this Article contained an error in Figure 2, wherein the bottom right western blot panel in Figure 2a was blank. This has now been corrected in both the PDF and HTML versions of the Article.

15.
Nat Commun ; 9(1): 2686, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-30002445

RESUMEN

The emerging discipline of bacterial glycoengineering has made it possible to produce designer glycans and glycoconjugates for use as vaccines and therapeutics. Unfortunately, cell-based production of homogeneous glycoproteins remains a significant challenge due to cell viability constraints and the inability to control glycosylation components at precise ratios in vivo. To address these challenges, we describe a novel cell-free glycoprotein synthesis (CFGpS) technology that seamlessly integrates protein biosynthesis with asparagine-linked protein glycosylation. This technology leverages a glyco-optimized Escherichia coli strain to source cell extracts that are selectively enriched with glycosylation components, including oligosaccharyltransferases (OSTs) and lipid-linked oligosaccharides (LLOs). The resulting extracts enable a one-pot reaction scheme for efficient and site-specific glycosylation of target proteins. The CFGpS platform is highly modular, allowing the use of multiple distinct OSTs and structurally diverse LLOs. As such, we anticipate CFGpS will facilitate fundamental understanding in glycoscience and make possible applications in on demand biomanufacturing of glycoproteins.


Asunto(s)
Escherichia coli/genética , Glicoproteínas/genética , Biosíntesis de Proteínas/genética , Transcripción Genética/genética , Biotecnología/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosilación , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Reproducibilidad de los Resultados
16.
Sci Adv ; 4(8): eaat5105, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30083608

RESUMEN

Hands-on demonstrations greatly enhance the teaching of science, technology, engineering, and mathematics (STEM) concepts and foster engagement and exploration in the sciences. While numerous chemistry and physics classroom demonstrations exist, few biology demonstrations are practical and accessible due to the challenges and concerns of growing living cells in classrooms. We introduce BioBits™ Explorer, a synthetic biology educational kit based on shelf-stable, freeze-dried, cell-free (FD-CF) reactions, which are activated by simply adding water. The FD-CF reactions engage the senses of sight, smell, and touch with outputs that produce fluorescence, fragrances, and hydrogels, respectively. We introduce components that can teach tunable protein expression, enzymatic reactions, biomaterial formation, and biosensors using RNA switches, some of which represent original FD-CF outputs that expand the toolbox of cell-free synthetic biology. The BioBits™ Explorer kit enables hands-on demonstrations of cutting-edge science that are inexpensive and easy to use, circumventing many current barriers for implementing exploratory biology experiments in classrooms.


Asunto(s)
Técnicas Biosensibles/métodos , Fenómenos Fisiológicos Celulares , Enzimas/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Musa/química , Odorantes/análisis , Biología Sintética/educación , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Enseñanza
17.
Sci Adv ; 4(8): eaat5107, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30083609

RESUMEN

Synthetic biology offers opportunities for experiential educational activities at the intersection of the life sciences, engineering, and design. However, implementation of hands-on biology activities in classrooms is challenging because of the need for specialized equipment and expertise to grow living cells. We present BioBits™ Bright, a shelf-stable, just-add-water synthetic biology education kit with easy visual outputs enabled by expression of fluorescent proteins in freeze-dried, cell-free reactions. We introduce activities and supporting curricula for teaching the central dogma, tunable protein expression, and design-build-test cycles and report data generated by K-12 teachers and students. We also develop inexpensive incubators and imagers, resulting in a comprehensive kit costing

Asunto(s)
Técnicas Biosensibles/métodos , Fenómenos Fisiológicos Celulares , Genes Sintéticos , Proteínas Luminiscentes/metabolismo , Biología Sintética/educación , Enseñanza
18.
Methods Enzymol ; 597: 55-81, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28935112

RESUMEN

Asparagine-linked (N-linked) protein glycosylation is one of the most abundant types of posttranslational modification, occurring in all domains of life. The central enzyme in N-linked glycosylation is the oligosaccharyltransferase (OST), which catalyzes the covalent attachment of preassembled glycans to specific asparagine residues in target proteins. Whereas in higher eukaryotes the OST is comprised of eight different membrane proteins, of which the catalytic subunit is STT3, in kinetoplastids and prokaryotes the OST is a monomeric enzyme bearing homology to STT3. Given their relative simplicity, these single-subunit OSTs (ssOSTs) have emerged as important targets for mechanistic dissection of poorly understood aspects of N-glycosylation and at the same time hold great potential for the biosynthesis of custom glycoproteins. To take advantage of this utility, this chapter describes a multipronged approach for studying and engineering ssOSTs that integrates in vivo screening technology with in vitro characterization methods, thereby creating a versatile and readily adaptable pipeline for virtually any ssOST of interest.


Asunto(s)
Bioquímica/métodos , Glicoproteínas/genética , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Ingeniería de Proteínas/métodos , Catálisis , Dominio Catalítico/genética , Escherichia coli/enzimología , Escherichia coli/genética , Glicoproteínas/biosíntesis , Glicoproteínas/química , Glicosilación , Hexosiltransferasas/biosíntesis , Hexosiltransferasas/química , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/química , Polisacáridos/química , Polisacáridos/genética , Relación Estructura-Actividad
19.
Artículo en Inglés | MEDLINE | ID: mdl-27742731

RESUMEN

Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.


Asunto(s)
Biología Sintética , Sistema Libre de Células , Redes Reguladoras de Genes , Biosíntesis de Proteínas , Proteínas/metabolismo
20.
FEBS Lett ; 589(15): 1723-1727, 2015 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-26054976

RESUMEN

Eukaryotic cell-free protein synthesis (CFPS) is limited by the dependence on costly high-energy phosphate compounds and exogenous enzymes to power protein synthesis (e.g., creatine phosphate and creatine kinase, CrP/CrK). Here, we report the ability to use glucose as a secondary energy substrate to regenerate ATP in a Saccharomyces cerevisiae crude extract CFPS platform. We observed synthesis of 3.64±0.35 µg mL(-1) active luciferase in batch reactions with 16 mM glucose and 25 mM phosphate, resulting in a 16% increase in relative protein yield (µg protein/$ reagents) compared to the CrP/CrK system. Our demonstration provides the foundation for development of cost-effective eukaryotic CFPS platforms.


Asunto(s)
Glucosa/metabolismo , Biosíntesis de Proteínas , Adenosina Trifosfato/biosíntesis , Sistema Libre de Células , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA