Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 60(19): D129-D142, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34263868

RESUMEN

We present the first on-sky results of a four-telescope integrated optics discrete beam combiner (DBC) tested at the 4.2 m William Herschel Telescope. The device consists of a four-input pupil remapper followed by a DBC and a 23-output reformatter. The whole device was written monolithically in a single alumino-borosilicate substrate using ultrafast laser inscription. The device was operated at astronomical H-band (1.6 µm), and a deformable mirror along with a microlens array was used to inject stellar photons into the device. We report the measured visibility amplitudes and closure phases obtained on Vega and Altair that are retrieved using the calibrated transfer matrix of the device. While the coherence function can be reconstructed, the on-sky results show significant dispersion from the expected values. Based on the analysis of comparable simulations, we find that such dispersion is largely caused by the limited signal-to-noise ratio of our observations. This constitutes a first step toward an improved validation of the DBC as a possible beam combination scheme for long-baseline interferometry.

2.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30530535

RESUMEN

Carbon capture and storage is a transition technology from a past and present fuelled by coal, oil and gas and a planned future dominated by renewable energy sources. The technology involves the capture of carbon dioxide emissions from fossil fuel power stations and other point sources, compression of the CO2 into a fluid, transporting it and injecting it deep beneath the Earth's surface into depleted petroleum reservoirs and other porous formations. Once injected, the CO2 must be monitored to ensure that it is emplaced and assimilated as planned and that none leaks back to surface. A variety of methods have been deployed to monitor the CO2 storage site and many such methods have been adapted from oilfield practice. However, such methods are commonly indirect, episodic, require active signal generation and remain expensive throughout the monitoring period that may last for hundreds of years. A modelling framework was developed to concurrently simulate CO2 geostorage conditions and background cosmic-ray muon tomography, in which the potential was assessed for using variations in muon attenuation, due to changes in CO2 abundance, as a means of CO2 detection. From this, we developed a passive, continuous monitoring method for CO2 storage sites using muon tomography, the tools for which can be deployed during the active drilling phase (development) of the storage site. To do this, it was necessary to develop a muon detector that could be used in the hostile environment (saline, high temperature) of the well bore. A prototype detector has been built and tested at the 1.1 km deep Boulby potash mine on the northeast coast of England, supported by the existing STFC Boulby Underground Laboratory on the site. The detector is now ready to be commercialized.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA