RESUMEN
OBJECTIVE: To assess visualization tasks using cone-beam CT (CBCT) compared to multi-detector CT (MDCT) for musculoskeletal extremity imaging. METHODS: Ten cadaveric hands and ten knees were examined using a dedicated CBCT prototype and a clinical multi-detector CT using nominal protocols (80 kVp-108mAs for CBCT; 120 kVp- 300 mAs for MDCT). Soft tissue and bone visualization tasks were assessed by four radiologists using five-point satisfaction (for CBCT and MDCT individually) and five-point preference (side-by-side CBCT versus MDCT image quality comparison) rating tests. Ratings were analyzed using Kruskal-Wallis and Wilcoxon signed-rank tests, and observer agreement was assessed using the Kappa-statistic. RESULTS: Knee CBCT images were rated "excellent" or "good" (median scores 5 and 4) for "bone" and "soft tissue" visualization tasks. Hand CBCT images were rated "excellent" or "adequate" (median scores 5 and 3) for "bone" and "soft tissue" visualization tasks. Preference tests rated CBCT equivalent or superior to MDCT for bone visualization and favoured the MDCT for soft tissue visualization tasks. Intraobserver agreement for CBCT satisfaction tests was fair to almost perfect (κ ~ 0.26-0.92), and interobserver agreement was fair to moderate (κ ~ 0.27-0.54). CONCLUSION: CBCT provided excellent image quality for bone visualization and adequate image quality for soft tissue visualization tasks. KEY POINTS: ⢠CBCT provided adequate image quality for diagnostic tasks in extremity imaging. ⢠CBCT images were "excellent" for "bone" and "good/adequate" for "soft tissue" visualization tasks. ⢠CBCT image quality was equivalent/superior to MDCT for bone visualization tasks.
Asunto(s)
Tejido Conectivo/diagnóstico por imagen , Sistema Musculoesquelético/diagnóstico por imagen , Tejido Adiposo/diagnóstico por imagen , Actitud del Personal de Salud , Huesos/diagnóstico por imagen , Cartílago Articular/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/normas , Comportamiento del Consumidor , Mano , Humanos , Articulación de la Rodilla , Ligamentos/diagnóstico por imagen , Tomografía Computarizada Multidetector/normas , Músculo Esquelético/diagnóstico por imagen , Variaciones Dependientes del Observador , Fantasmas de Imagen , RadiologíaRESUMEN
PURPOSE: X-ray scatter is a major detriment to image quality in cone-beam CT (CBCT). Existing geometries exhibit strong differences in scatter susceptibility with more compact geometries, e.g., dental or musculoskeletal, benefiting from antiscatter grids, whereas in more extended geometries, e.g., IGRT, grid use carries tradeoffs in image quality per unit dose. This work assesses the tradeoffs in dose and image quality for grids applied in the context of low-dose CBCT on a mobile C-arm for image-guided surgery. METHODS: Studies were performed on a mobile C-arm equipped with a flat-panel detector for high-quality CBCT. Antiscatter grids of grid ratio (GR) 6:1-12:1, 40 lp∕cm, were tested in "body" surgery, i.e., spine, using protocols for bone and soft-tissue visibility in the thoracic and abdominal spine. Studies focused on grid orientation, CT number accuracy, image noise, and contrast-to-noise ratio (CNR) in quantitative phantoms at constant dose. RESULTS: There was no effect of grid orientation on possible gridline artifacts, given accurate angle-dependent gain calibration. Incorrect calibration was found to result in gridline shadows in the projection data that imparted high-frequency artifacts in 3D reconstructions. Increasing GR reduced errors in CT number from 31%, thorax, and 37%, abdomen, for gridless operation to 2% and 10%, respectively, with a 12:1 grid, while image noise increased by up to 70%. The CNR of high-contrast objects was largely unaffected by grids, but low-contrast soft-tissues suffered reduction in CNR, 2%-65%, across the investigated GR at constant dose. CONCLUSIONS: While grids improved CT number accuracy, soft-tissue CNR was reduced due to attenuation of primary radiation. CNR could be restored by increasing dose by factors of ~1.6-2.5 depending on GR, e.g., increase from 4.6 mGy for the thorax and 12.5 mGy for the abdomen without antiscatter grids to approximately 12 mGy and 30 mGy, respectively, with a high-GR grid. However, increasing the dose poses a significant impediment to repeat intraoperative CBCT and can cause the cumulative intraoperative dose to exceed that of a single diagnostic CT scan. This places the mobile C-arm in the category of extended CBCT geometries with sufficient air gap for which the tradeoffs between CNR and dose typically do not favor incorporation of an antiscatter grid.
Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico/instrumentación , Aumento de la Imagen/instrumentación , Pantallas Intensificadoras de Rayos X , Diseño de Equipo , Análisis de Falla de Equipo , Fantasmas de Imagen , Dosis de Radiación , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad , Rayos XRESUMEN
PURPOSE: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. METHODS: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. RESULTS: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within â¼200 mm of C-arm isocenter. Marker localization in projection data was robust across all anatomical sites, including challenging scenarios involving the presence of interventional tools. The reprojection error of marker localization was independent of the distance of the ARM from isocenter, and the overall TRE was dominated by the configuration of individual fiducials and distance from the target as predicted by theory. The median TRE increased with greater ARM-to-isocenter distance (e.g., for the Free-Form method, TRE increasing from 0.78 mm to 2.04 mm at distances of â¼75 mm and 370 mm, respectively). The median TRE within â¼200 mm distance was consistently lower than that of the manual method (TRE = 0.82 mm). Registration performance was independent of anatomical site (head, thorax, and abdomen). The Free-Form method demonstrated a statistically significant improvement (p = 0.0044) in reproducibility compared to manual registration (0.22 mm versus 0.30 mm, respectively). CONCLUSIONS: Automatic image-to-world registration methods demonstrate the potential for improved accuracy, reproducibility, and workflow in CBCT-guided procedures. A Free-Form method was shown to exhibit robustness against anatomical site, with comparable or improved TRE compared to manual registration. It was also comparable or superior in performance to a Known-Model method in which the ARM configuration is specified as a predefined tool, thereby allowing configuration of fiducials on the fly or attachment to the patient.
Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Automatización , Tomografía Computarizada de Haz Cónico/instrumentación , Tomografía Computarizada de Haz Cónico/normas , Marcadores Fiduciales , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Procesamiento de Imagen Asistido por Computador/normas , Análisis de los Mínimos Cuadrados , Modelos LinealesRESUMEN
PURPOSE: This work applies a cascaded systems model for cone-beam CT imaging performance to the design and optimization of a system for musculoskeletal extremity imaging. The model provides a quantitative guide to the selection of system geometry, source and detector components, acquisition techniques, and reconstruction parameters. METHODS: The model is based on cascaded systems analysis of the 3D noise-power spectrum (NPS) and noise-equivalent quanta (NEQ) combined with factors of system geometry (magnification, focal spot size, and scatter-to-primary ratio) and anatomical background clutter. The model was extended to task-based analysis of detectability index (d') for tasks ranging in contrast and frequency content, and d' was computed as a function of system magnification, detector pixel size, focal spot size, kVp, dose, electronic noise, voxel size, and reconstruction filter to examine trade-offs and optima among such factors in multivariate analysis. The model was tested quantitatively versus the measured NPS and qualitatively in cadaver images as a function of kVp, dose, pixel size, and reconstruction filter under conditions corresponding to the proposed scanner. RESULTS: The analysis quantified trade-offs among factors of spatial resolution, noise, and dose. System magnification (M) was a critical design parameter with strong effect on spatial resolution, dose, and x-ray scatter, and a fairly robust optimum was identified at M â¼ 1.3 for the imaging tasks considered. The results suggested kVp selection in the range of â¼65-90 kVp, the lower end (65 kVp) maximizing subject contrast and the upper end maximizing NEQ (90 kVp). The analysis quantified fairly intuitive results-e.g., â¼0.1-0.2 mm pixel size (and a sharp reconstruction filter) optimal for high-frequency tasks (bone detail) compared to â¼0.4 mm pixel size (and a smooth reconstruction filter) for low-frequency (soft-tissue) tasks. This result suggests a specific protocol for 1 × 1 (full-resolution) projection data acquisition followed by full-resolution reconstruction with a sharp filter for high-frequency tasks along with 2 × 2 binning reconstruction with a smooth filter for low-frequency tasks. The analysis guided selection of specific source and detector components implemented on the proposed scanner. The analysis also quantified the potential benefits and points of diminishing return in focal spot size, reduced electronic noise, finer detector pixels, and low-dose limits of detectability. Theoretical results agreed quantitatively with the measured NPS and qualitatively with evaluation of cadaver images by a musculoskeletal radiologist. CONCLUSIONS: A fairly comprehensive model for 3D imaging performance in cone-beam CT combines factors of quantum noise, system geometry, anatomical background, and imaging task. The analysis provided a valuable, quantitative guide to design, optimization, and technique selection for a musculoskeletal extremities imaging system under development.
Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Diagnóstico por Imagen/métodos , Algoritmos , Humanos , Imagenología Tridimensional/métodos , Modelos Anatómicos , Modelos Estadísticos , Modelos Teóricos , Análisis Multivariante , Fantasmas de Imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Reproducibilidad de los ResultadosRESUMEN
PURPOSE: A flat-panel detector based mobile isocentric C-arm for cone-beam CT (CBCT) has been developed to allow intraoperative 3D imaging with sub-millimeter spatial resolution and soft-tissue visibility. Image quality and radiation dose were evaluated in spinal surgery, commonly relying on lower-performance image intensifier based mobile C-arms. Scan protocols were developed for task-specific imaging at minimum dose, in-room exposure was evaluated, and integration of the imaging system with a surgical guidance system was demonstrated in preclinical studies of minimally invasive spine surgery. METHODS: Radiation dose was assessed as a function of kilovolt (peak) (80-120 kVp) and milliampere second using thoracic and lumbar spine dosimetry phantoms. In-room radiation exposure was measured throughout the operating room for various CBCT scan protocols. Image quality was assessed using tissue-equivalent inserts in chest and abdomen phantoms to evaluate bone and soft-tissue contrast-to-noise ratio as a function of dose, and task-specific protocols (i.e., visualization of bone or soft-tissues) were defined. Results were applied in preclinical studies using a cadaveric torso simulating minimally invasive, transpedicular surgery. RESULTS: Task-specific CBCT protocols identified include: thoracic bone visualization (100 kVp; 60 mAs; 1.8 mGy); lumbar bone visualization (100 kVp; 130 mAs; 3.2 mGy); thoracic soft-tissue visualization (100 kVp; 230 mAs; 4.3 mGy); and lumbar soft-tissue visualization (120 kVp; 460 mAs; 10.6 mGy)--each at (0.3 x 0.3 x 0.9 mm3) voxel size. Alternative lower-dose, lower-resolution soft-tissue visualization protocols were identified (100 kVp; 230 mAs; 5.1 mGy) for the lumbar region at (0.3 x 0.3 x 1.5 mm3) voxel size. Half-scan orbit of the C-arm (x-ray tube traversing under the table) was dosimetrically advantageous (prepatient attenuation) with a nonuniform dose distribution (-2 x higher at the entrance side than at isocenter, and -3-4 lower at the exit side). The in-room dose (microsievert) per unit scan dose (milligray) ranged from -21 microSv/mGy on average at tableside to -0.1 microSv/mGy at 2.0 m distance to isocenter. All protocols involve surgical staff stepping behind a shield wall for each CBCT scan, therefore imparting -zero dose to staff. Protocol implementation in preclinical cadaveric studies demonstrate integration of the C-arm with a navigation system for spine surgery guidance-specifically, minimally invasive vertebroplasty in which the system provided accurate guidance and visualization of needle placement and bone cement distribution. Cumulative dose including multiple intraoperative scans was -11.5 mGy for CBCT-guided thoracic vertebroplasty and -23.2 mGy for lumbar vertebroplasty, with dose to staff at tableside reduced to -1 min of fluoroscopy time (-4(0-60 microSv), compared to 5-11 min for the conventional approach. CONCLUSIONS: Intraoperative CBCT using a high-performance mobile C-arm prototype demonstrates image quality suitable to guidance of spine surgery, with task-specific protocols providing an important basis for minimizing radiation dose, while maintaining image quality sufficient for surgical guidance. Images demonstrate a significant advance in spatial resolution and soft-tissue visibility, and CBCT guidance offers the potential to reduce fluoroscopy reliance, reducing cumulative dose to patient and staff. Integration with a surgical guidance system demonstrates precise tracking and visualization in up-to-date images (alleviating reliance on preoperative images only), including detection of errors or suboptimal surgical outcomes in the operating room.
Asunto(s)
Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/cirugía , Cadáver , Tomografía Computarizada de Haz Cónico/estadística & datos numéricos , Humanos , Imagenología Tridimensional/estadística & datos numéricos , Periodo Intraoperatorio , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Procedimientos Quirúrgicos Mínimamente Invasivos , Fantasmas de Imagen , Dosis de Radiación , Radiografía Intervencional , Radiometría , Vértebras Torácicas/diagnóstico por imagen , Vértebras Torácicas/cirugía , VertebroplastiaRESUMEN
PURPOSE: This paper reports on the design and initial imaging performance of a dedicated cone-beam CT (CBCT) system for musculoskeletal (MSK) extremities. The system complements conventional CT and MR and offers a variety of potential clinical and logistical advantages that are likely to be of benefit to diagnosis, treatment planning, and assessment of therapy response in MSK radiology, orthopaedic surgery, and rheumatology. METHODS: The scanner design incorporated a host of clinical requirements (e.g., ability to scan the weight-bearing knee in a natural stance) and was guided by theoretical and experimental analysis of image quality and dose. Such criteria identified the following basic scanner components and system configuration: a flat-panel detector (FPD, Varian 3030+, 0.194 mm pixels); and a low-power, fixed anode x-ray source with 0.5 mm focal spot (SourceRay XRS-125-7K-P, 0.875 kW) mounted on a retractable C-arm allowing for two scanning orientations with the capability for side entry, viz. a standing configuration for imaging of weight-bearing lower extremities and a sitting configuration for imaging of tensioned upper extremity and unloaded lower extremity. Theoretical modeling employed cascaded systems analysis of modulation transfer function (MTF) and detective quantum efficiency (DQE) computed as a function of system geometry, kVp and filtration, dose, source power, etc. Physical experimentation utilized an imaging bench simulating the scanner geometry for verification of theoretical results and investigation of other factors, such as antiscatter grid selection and 3D image quality in phantom and cadaver, including qualitative comparison to conventional CT. RESULTS: Theoretical modeling and benchtop experimentation confirmed the basic suitability of the FPD and x-ray source mentioned above. Clinical requirements combined with analysis of MTF and DQE yielded the following system geometry: a -55 cm source-to-detector distance; 1.3 magnification; a 20 cm diameter bore (20 x 20 x 20 cm3 field of view); total acquisition arc of -240 degrees. The system MTF declines to 50% at -1.3 mm(-1) and to 10% at -2.7 mm(-1), consistent with sub-millimeter spatial resolution. Analysis of DQE suggested a nominal technique of 90 kVp (+0.3 mm Cu added filtration) to provide high imaging performance from -500 projections at less than -0.5 kW power, implying -6.4 mGy (0.064 mSv) for low-dose protocols and -15 mGy (0.15 mSv) for high-quality protocols. The experimental studies show improved image uniformity and contrast-to-noise ratio (without increase in dose) through incorporation of a custom 10:1 GR antiscatter grid. Cadaver images demonstrate exquisite bone detail, visualization of articular morphology, and soft-tissue visibility comparable to diagnostic CT (10-20 HU contrast resolution). CONCLUSIONS: The results indicate that the proposed system will deliver volumetric images of the extremities with soft-tissue contrast resolution comparable to diagnostic CT and improved spatial resolution at potentially reduced dose. Cascaded systems analysis provided a useful basis for system design and optimization without costly repeated experimentation. A combined process of design specification, image quality analysis, clinical feedback, and revision yielded a prototype that is now awaiting clinical pilot studies. Potential advantages of the proposed system include reduced space and cost, imaging of load-bearing extremities, and combined volumetric imaging with real-time fluoroscopy and digital radiography.
Asunto(s)
Tomografía Computarizada de Haz Cónico/instrumentación , Extremidades/diagnóstico por imagen , Sistema Musculoesquelético/diagnóstico por imagen , Cadáver , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada de Haz Cónico/estadística & datos numéricos , Diseño de Equipo , Humanos , Fantasmas de Imagen , Dosis de Radiación , Dispersión de RadiaciónRESUMEN
Model-based iterative reconstruction (MBIR) for cone-beam CT (CBCT) offers better noise-resolution tradeoff and image quality than analytical methods for acquisition protocols with low x-ray dose or limited data, but with increased computational burden that poses a drawback to routine application in clinical scenarios. This work develops a comprehensive framework for acceleration of MBIR in the form of penalized weighted least squares optimized with ordered subsets separable quadratic surrogates. The optimization was scheduled on a set of stages forming a morphological pyramid varying in voxel size. Transition between stages was controlled with a convergence criterion based on the deviation between the mid-band noise power spectrum (NPS) measured on a homogeneous region of the evolving reconstruction and that expected for the converged image, computed with an analytical model that used projection data and the reconstruction parameters. A stochastic backprojector was developed by introducing a random perturbation to the sampling position of each voxel for each ray in the reconstruction within a voxel-based backprojector, breaking the deterministic pattern of sampling artifacts when combined with an unmatched Siddon forward projector. This fast, forward and backprojector pair were included into a multi-resolution reconstruction strategy to provide support for objects partially outside of the field of view. Acceleration from ordered subsets was combined with momentum accumulation stabilized with an adaptive technique that automatically resets the accumulated momentum when it diverges noticeably from the current iteration update. The framework was evaluated with CBCT data of a realistic abdomen phantom acquired on an imaging x-ray bench and with clinical CBCT data from an angiography robotic C-arm (Artis Zeego, Siemens Healthineers, Forchheim, Germany) acquired during a liver embolization procedure. Image fidelity was assessed with the structural similarity index (SSIM) computed with a converged reconstruction. The accelerated framework provided accurate reconstructions in 60 s (SSIM = 0.97) and as little as 27 s (SSIM = 0.94) for soft-tissue evaluation. The use of simple forward and backprojectors resulted in 9.3× acceleration. Accumulation of momentum provided extra â¼3.5× acceleration with stable convergence for 6-30 subsets. The NPS-driven morphological pyramid resulted in initial faster convergence, achieving similar SSIM with 1.5× lower runtime than the single-stage optimization. Acceleration of MBIR to provide reconstruction time compatible with clinical applications is feasible via architectures that integrate algorithmic acceleration with approaches to provide stable convergence, and optimization schedules that maximize convergence speed.
Asunto(s)
Algoritmos , Tomografía Computarizada de Haz Cónico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Fantasmas de Imagen , Artefactos , Alemania , HumanosRESUMEN
Image-guided therapies in the abdomen and pelvis are often hindered by motion artifacts in cone-beam CT (CBCT) arising from complex, non-periodic, deformable organ motion during long scan times (5-30 s). We propose a deformable image-based motion compensation method to address these challenges and improve CBCT guidance. Motion compensation is achieved by selecting a set of small regions of interest in the uncompensated image to minimize a cost function consisting of an autofocus objective and spatiotemporal regularization penalties. Motion trajectories are estimated using an iterative optimization algorithm (CMA-ES) and used to interpolate a 4D spatiotemporal motion vector field. The motion-compensated image is reconstructed using a modified filtered backprojection approach. Being image-based, the method does not require additional input besides the raw CBCT projection data and system geometry that are used for image reconstruction. Experimental studies investigated: (1) various autofocus objective functions, analyzed using a digital phantom with a range of sinusoidal motion magnitude (4, 8, 12, 16, 20 mm); (2) spatiotemporal regularization, studied using a CT dataset from The Cancer Imaging Archive with deformable sinusoidal motion of variable magnitude (10, 15, 20, 25 mm); and (3) performance in complex anatomy, evaluated in cadavers undergoing simple and complex motion imaged on a CBCT-capable mobile C-arm system (Cios Spin 3D, Siemens Healthineers, Forchheim, Germany). Gradient entropy was found to be the best autofocus objective for soft-tissue CBCT, increasing structural similarity (SSIM) by 42%-92% over the range of motion magnitudes investigated. The optimal temporal regularization strength was found to vary widely (0.5-5 mm-2) over the range of motion magnitudes investigated, whereas optimal spatial regularization strength was relatively constant (0.1). In cadaver studies, deformable motion compensation was shown to improve local SSIM by â¼17% for simple motion and â¼21% for complex motion and provided strong visual improvement of motion artifacts (reduction of blurring and streaks and improved visibility of soft-tissue edges). The studies demonstrate the robustness of deformable motion compensation to a range of motion magnitudes, frequencies, and other factors (e.g. truncation and scatter).
Asunto(s)
Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador/métodos , Movimientos de los Órganos , Algoritmos , Artefactos , Humanos , Fantasmas de Imagen , Factores de TiempoRESUMEN
PURPOSE: We investigate an application of multisource extremity Cone-Beam CT (CBCT) with capability of weight-bearing tomographic imaging to obtain quantitative measurements of load-induced deformation of metal internal fixation hardware (e.g. tibial plate). Such measurements are desirable to improve the detection of delayed fusion or non-union of fractures, potentially facilitating earlier return to weight-bearing activities. METHODS: To measure the deformation, we perform a deformable 3D-2D registration of a prior model of the implant to its CBCT projections under load-bearing. This Known-Component Registration (KC-Reg) framework avoids potential errors that emerge when the deformation is estimated directly from 3D reconstructions with metal artifacts. The 3D-2D registration involves a free-form deformable (FFD) point cloud model of the implant and a 3D cubic B-spline representation of the deformation. Gradient correlation is used as the optimization metric for the registration. The proposed approach was tested in experimental studies on the extremity CBCT system. A custom jig was designed to apply controlled axial loads to a fracture model, emulating weight-bearing imaging scenarios. Performance evaluation involved a Sawbone tibia phantom with an ~4 mm fracture gap. The model was fixed with a locking plate and imaged under five loading conditions. To investigate performance in the presence of confounding background gradients, additional experiments were performed with a pre-deformed femoral plate placed in a water bath with Ca bone mineral density inserts. Errors were measured using eight reference BBs for the tibial plate, and surface point distances for the femoral plate, where a prior model of deformed implant was available for comparison. RESULTS: Both in the loaded tibial plate case and for the femoral plate with confounding background gradients, the proposed KC-Reg framework estimated implant deformations with errors of <0.2 mm for the majority of the investigated deformation magnitudes (error range 0.14 - 0.25 mm). The accuracy was comparable between 3D-2D registrations performed from 12 x-ray views and registrations obtained from as few as 3 views. This was likely enabled by the unique three-source x-ray unit on the extremity CBCT scanner, which implements two off-central-plane focal spots that provided oblique views of the field-of-view to aid implant pose estimation. CONCLUSION: Accurate measurements of fracture hardware deformations under physiological weight-bearing are feasible using an extremity CBCT scanner and FFD 3D-2D registration. The resulting deformed implant models can be incorporated into tomographic reconstructions to reduce metal artifacts and improve quantification of the mineral content of fracture callus in CBCT volumes.
RESUMEN
PURPOSE: Our aim was to develop a high-quality, mobile cone-beam computed tomography (CBCT) scanner for point-of-care detection and monitoring of low-contrast, soft-tissue abnormalities in the head/brain, such as acute intracranial hemorrhage (ICH). This work presents an integrated framework of hardware and algorithmic advances for improving soft-tissue contrast resolution and evaluation of its technical performance with human subjects. METHODS: Four configurations of a CBCT scanner prototype were designed and implemented to investigate key aspects of hardware (including system geometry, antiscatter grid, bowtie filter) and technique protocols. An integrated software pipeline (c.f., a serial cascade of algorithms) was developed for artifact correction (image lag, glare, beam hardening and x-ray scatter), motion compensation, and three-dimensional image (3D) reconstruction [penalized weighted least squares (PWLS), with a hardware-specific statistical noise model]. The PWLS method was extended in this work to accommodate multiple, independently moving regions with different resolution (to address both motion compensation and image truncation). Imaging performance was evaluated quantitatively and qualitatively with 41 human subjects in the neurosciences critical care unit (NCCU) at our institution. RESULTS: The progression of four scanner configurations exhibited systematic improvement in the quality of raw data by variations in system geometry (source-detector distance), antiscatter grid, and bowtie filter. Quantitative assessment of CBCT images in 41 subjects demonstrated: ~70% reduction in image nonuniformity with artifact correction methods (lag, glare, beam hardening, and scatter); ~40% reduction in motion-induced streak artifacts via the multi-motion compensation method; and ~15% improvement in soft-tissue contrast-to-noise ratio (CNR) for PWLS compared to filtered backprojection (FBP) at matched resolution. Each of these components was important to improve contrast resolution for point-of-care cranial imaging. CONCLUSIONS: This work presents the first application of a high-quality, point-of-care CBCT system for imaging of the head/ brain in a neurological critical care setting. Hardware configuration iterations and an integrated software pipeline for artifacts correction and PWLS reconstruction mitigated artifacts and noise to achieve image quality that could be valuable for point-of-care detection and monitoring of a variety of intracranial abnormalities, including ICH and hydrocephalus.
Asunto(s)
Tomografía Computarizada de Haz Cónico , Cabeza , Algoritmos , Artefactos , Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de ImagenRESUMEN
Volume-of-interest (VOI) imaging is a promising strategy for dose reduction in computed tomography (CT) while retaining image quality. However, implementation of VOI-CT has been challenged by the lack of adequate hardware and the interior tomography reconstruction problem. Multiple aperture devices (MAD) are a novel filtration scheme that can achieve x-ray fluence field modulation in a compact design with small translations. In this work, we propose a general approach for VOI imaging using MADs. MAD trajectories are designed to dynamically tailor the fluence for prescribed VOI. A penalized-likelihood reconstruction algorithm is proposed for fully truncated projections extended with scout views. Physical experiments were conducted to verify the feasibility for non-centered elliptic VOIs. Image quality and dose were estimated and compared with standard fullfield protocols. The ability of MAD-based VOI imaging to retain high image quality while significantly decreasing the total dose is demonstrated, suggesting the potential for dose reduction in clinical CT applications.
RESUMEN
PURPOSE: We develop and validate a model-based framework for artifact correction and image reconstruction to enable application of Cone-Beam CT (CBCT) in quantitative assessment of bone mineral density (BMD). Compared to conventional quantitative CT, this approach does not require a BMD calibration phantom in the field-of-view during an object scan. METHODS: The quantitative CBCT (qCBCT) imaging framework combined fast Monte Carlo (MC) scatter estimation, accurate models of detector response, and polyenergetic Poisson likelihood (PolyPL, Elbakri et al 2003). The underlying object model assumed that the tissues were ideal mixtures of water and calcium carbonate (CaCO3). Accuracy and reproducibility of qCBCT was evaluated in benchtop test-retest studies emulating a compact extremity CBCT system (axis-detector distance=56 cm, 90 kVp x-ray beam, ~16 mGy central dose). Various arrangements of Ca inserts (50-500 mg/mL) were placed in water cylinders of ~11 cm to ~15 cm diameter and scanned at multiple positions inside the field-of-view for a total of 20 configurations. In addition, a cadaveric ankle was imaged in five configurations (with and without Ca inserts and water bath). Coefficient of variation (CV) of BMD values across different experimental configurations was used to assess reproducibility under varying imaging conditions. The performance of the model-based qCBCT framework (MC + PolyPL) was compared to FDK with water beam hardening correction and MC scatter correction. RESULTS: The PolyPL framework achieved accuracy of 20 mg/mL or better across all insert densities and experimental configurations. By comparison, the accuracy of the FDK-based BMD estimates deteriorated with higher mineralization, resulting in ~120 mg/mL error for a 500 mg/mL Ca insert. Additionally, the model-based approach mitigated residual streaks that were present in FDK reconstructions. The CV of both methods was ~15% at 50 mg/mL Ca and less than ~8% for higher density inserts, where the PolyPL framework achieved 20-25% lower CV than the FDK-based approach. CONCLUSION: Accurate and reproducible BMD measurements can be achieved in extremity CBCT, supporting clinical applications in quantitative monitoring of fracture risk, osteoporosis treatment, and early osteoarthritis.
RESUMEN
Model-based iterative reconstruction (MBIR) offers improved noise-resolution tradeoffs and artifact reduction in cone-beam CT compared to analytical reconstruction, but carries increased computational burden. An important consideration in minimizing computation time is reliable selection of the stopping criterion to perform the minimum number of iterations required to obtain the desired image quality. Most MBIR methods rely on a fixed number of iterations or relative metrics on image or cost-function evolution, and it would be desirable to use metrics that are more representative of the underlying image properties. A second front for reduction of computation time is the use of acceleration techniques (e.g. subsets or momentum). However, most of these techniques do not strictly guarantee convergence of the resulting MBIR method. A data-dependent analytical model of noise-power spectrum (NPS) for penalized weighted least squares (PWLS) reconstruction is proposed as an absolute metric of image properties for the fully converged volume. Distance to convergence is estimated as the root mean squared error (RMSE) between the estimated NPS and an NPS measured on a uniform region of interest (ROI) in the evolving volume. Iterations are stopped when the RMSE falls below a threshold directly related with the properties of the target image. Further acceleration was achieved by combining the spectral stopping criterion with a morphological pyramid (mPyr) in which the minimization of the PWLS cost-function is divided in a cascade of stages. The algorithm parameters (voxel size in this work) change between stages to achieve faster evolution in early stages, and a final stage with the target parameters to guarantee convergence. Transition between stages is governed by the spectral stopping criterion. The approach was evaluated on simulated CBCT data of a realistic digital abdomen phantom. Accuracy of the NPS model and evolution with time of the distance from the measured NPS was assessed in two ROIs. Performance of the spectrally-driven mPyr architecture was compared to a conventional, single stage, PWLS, and to two mPyr designs running a fixed number of iterations. The spectrally-driven mPyr achieved faster convergence, with 40% lower RMSE than the single stage PWLS, and between 10% and 20% RMSE reduction compared to other mPyr designs. The proposed spectral stopping criterion proved to be a suitable choice for a stopping rule, and, in particular, to govern mPyr stage transition.
RESUMEN
PURPOSE: Intraoperative 2D virtual long-film (VLF) imaging is investigated for 3D guidance and confirmation of the surgical product in spinal deformity correction. Multi-slot-scan geometry (rather than a single-slot "topogram") is exploited to produce parallax views of the scene for accurate 3D colocalization from a single radiograph. METHODS: The multi-slot approach uses additional angled collimator apertures to form fan-beams with disparate views (parallax) of anatomy and instrumentation and to extend field-of-view beyond the linear motion limits. Combined with a knowledge of surgical implants (pedicle screws and/or spinal rods modeled as "known components"), 3D-2D image registration is used to solve for pose estimates via optimization of image gradient correlation. Experiments were conducted in cadaver studies emulating the system geometry of the O-arm (Medtronic, Minneapolis MN). RESULTS: Experiments demonstrated feasibility of multi-slot VLF and quantified the geometric accuracy of 3D-2D registration using VLF acquisitions. Registration of pedicle screws from a single VLF yielded mean target registration error of (2.0±0.7) mm, comparable to the accuracy of surgical trackers and registration using multiple radiographs (e.g., AP and LAT). CONCLUSIONS: 3D-2D registration in a single VLF image offers a promising new solution for image guidance in spinal deformity correction. The ability to accurately resolve pose from a single view absolves workflow challenges of multiple-view registration and suggests application beyond spine surgery, such as reduction of long-bone fractures.
RESUMEN
Intraoperative cone-beam CT (CBCT) is increasingly used for surgical navigation and validation of device placement. In spinal deformity correction, CBCT provides visualization of pedicle screws and fixation rods in relation to adjacent anatomy. This work reports and evaluates a method that uses prior information regarding such surgical instrumentation for improved metal artifact reduction (MAR). The known-component MAR (KC-MAR) approach achieves precise localization of instrumentation in projection images using rigid or deformable 3D-2D registration of component models, thereby overcoming residual errors associated with segmentation-based methods. Projection data containing metal components are processed via 2D inpainting of the detector signal, followed by 3D filtered back-projection (FBP). Phantom studies were performed to identify nominal algorithm parameters and quantitatively investigate performance over a range of component material composition and size. A cadaver study emulating screw and rod placement in spinal deformity correction was conducted to evaluate performance under realistic clinical imaging conditions. KC-MAR demonstrated reduction in artifacts (standard deviation in voxel values) across a range of component types and dose levels, reducing the artifact to 5-10 HU. Accurate component delineation was demonstrated for rigid (screw) and deformable (rod) models with sub-mm registration errors, and a single-pixel dilation of the projected components was found to compensate for partial-volume effects. Artifacts associated with spine screws and rods were reduced by 40%-80% in cadaver studies, and the resulting images demonstrated markedly improved visualization of instrumentation (e.g. screw threads) within cortical margins. The KC-MAR algorithm combines knowledge of surgical instrumentation with 3D image reconstruction in a manner that overcomes potential pitfalls of segmentation. The approach is compatible with FBP-thereby maintaining simplicity in a manner that is consistent with surgical workflow-or more sophisticated model-based reconstruction methods that could further improve image quality and/or help reduce radiation dose.
Asunto(s)
Artefactos , Tomografía Computarizada de Haz Cónico , Metales , Intensificación de Imagen Radiográfica/métodos , Anciano , Algoritmos , Humanos , Imagenología Tridimensional , Masculino , Tornillos Pediculares , Fantasmas de Imagen , Columna Vertebral/cirugíaRESUMEN
Dual energy computed tomography (DE CT) is a promising technology for the assessment of bone compositions. One of potential applications involves evaluations of fracture healing using longitudinal measurements of callus mineralization. However, imaging of fractures is often challenged by the presence of metal fixation hardware. In this work, we report on a new simultaneous DE reconstruction-decomposition algorithm that integrates the previously introduced Model-Based Material Decomposition (MBMD) with a Known-Component (KC) framework to mitigate metal artifacts. The algorithm was applied to the DE data obtained on a dedicated extremity cone-beam CT (CBCT) with capability for weight-bearing imaging. To acquire DE projections in a single gantry rotation, we exploited a unique multisource design of the system, where three X-ray sources were mounted parallel to the axis of rotation. The central source provided high energy (HE) data at 120 kVp, while the two remaining sources were operated at a low energy (LE) of 60 kVp. This novel acquisition trajectory further motivates the use of MBMD to accommodate this complex DE sampling pattern. The algorithm was validated in a simulation study using a digital extremity phantom. The phantom consisted of a water background with an insert containing varying concentrations of calcium (50 - 175 mg/mL). Two configurations of titanium implants were considered: a fixation plate and an intramedullary nail. The accuracy of calcium-water decompositions obtained with the proposed KC-MBMD algorithm was compared to MBMD without metal component model. Metal artifacts were almost completely removed by KC-MBMD. Relative absolute errors of calcium concentration in the vicinity of metal were 6% - 31% for KC-MBMD (depending on the calcium insert and implant configuration), compared favorably to 48% - 273% for MBMD. Moreover, accuracy of concentration estimates for KC-MBMD in the presence of metal implant approached that of MBMD in a configuration without implant (6%-23%). The proposed algorithm achieved accurate DE material decomposition in the presence of metal implants using a non-conventional, axial multisource DE acquisition pattern.
RESUMEN
PURPOSE: Model based iterative reconstruction (MBIR) algorithms such as penalized-likelihood (PL) methods have data-dependent and shift-variant image properties. Predictors of local reconstructed noise and resolution have found application in a number of methods that seek to understand, control, and optimize CT data acquisition and reconstruction parameters in a prospective fashion (as opposed to studies based on exhaustive evaluation). However, previous MBIR prediction methods have relied on idealized system models. In this work, we develop and validate new predictors using accurate physical models specific to flat-panel CT systems. METHODS: Novel predictors for estimation of local spatial resolution and noise properties are developed for PL reconstruction that include a physical model for blur and correlated noise in flat-panel cone-beam CT (CBCT) acquisitions. Prospective predictions (e.g., without reconstruction) of local point spread function and and local noise power spectrum (NPS) model are applied, compared, and validated using a flat-panel CBCT test bench. RESULTS: Comparisons between prediction and physical measurements show excellent agreement for both spatial resolution and noise properties. In comparison, traditional prediction methods (that ignore blur/correlation found in flat-panel data) fail to capture important data characteristics and show significant mismatch. CONCLUSION: Novel image property predictors permit prospective assessment of flat-panel CBCT using MBIR. Such predictors enable standard and task-based performance assessments, and are well-suited to evaluation, control, and optimization of the CT imaging chain (e.g., x-ray technique, reconstruction parameters, novel data acquisition methods, etc.) for improved imaging performance and/or dose utilization.
RESUMEN
PURPOSE: Model-based image registration and reconstruction offer strong potential for improved safety and precision in image-guided interventions. Advantages include reduced radiation dose, improved soft-tissue visibility (detection of complications), and accurate guidance with/without a dedicated navigation system. This work reports the development and performance of such methods on an O-arm system for intraoperative imaging and translates them to first clinical studies. METHODS: Two novel methodologies predicate the work: (1) Known-Component Registration (KC-Reg) for 3D localization of the patient and interventional devices from 2D radiographs; and (2) Penalized-Likelihood reconstruction (PLH) for improved 3D image quality and dose reduction. A thorough assessment of geometric stability, dosimetry, and image quality was performed to define algorithm parameters for imaging and guidance protocols. Laboratory studies included: evaluation of KC-Reg in localization of spine screws delivered in cadaver; and PLH performance in contrast, noise, and resolution in phantoms/cadaver compared to filtered backprojection (FBP). RESULTS: KC-Reg was shown to successfully register screw implants within ~1 mm based on as few as 3 radiographs. PLH was shown to improve soft-tissue visibility (61% improvement in CNR) compared to FBP at matched resolution. Cadaver studies verified the selection of algorithm parameters and the methods were successfully translated to clinical studies under an IRB protocol. CONCLUSIONS: Model-based registration and reconstruction approaches were shown to reduce dose and provide improved visualization of anatomy and surgical instrumentation. Immediate future work will focus on further integration of KC-Reg and PLH for Known-Component Reconstruction (KC-Recon) to provide high-quality intraoperative imaging in the presence of dense instrumentation.
RESUMEN
PURPOSE: To assess the imaging performance and radiation dose characteristics of the O-arm CBCT imaging system (Medtronic Inc., Littleton MA) and demonstrate the potential for improved image quality and reduced dose via model-based image reconstruction (MBIR). METHODS: Two main studies were performed to investigate previously unreported characteristics of the O-arm system. First is an investigation of dose and 3D image quality achieved with filtered back-projection (FBP) - including enhancements in geometric calibration, handling of lateral truncation and detector saturation, and incorporation of an isotropic apodization filter. Second is implementation of an MBIR algorithm based on Huber-penalized likelihood estimation (PLH) and investigation of image quality improvement at reduced dose. Each study involved measurements in quantitative phantoms as a basis for analysis of contrast-to-noise ratio and spatial resolution as well as imaging of a human cadaver to test the findings under realistic imaging conditions. RESULTS: View-dependent calibration of system geometry improved the accuracy of reconstruction as quantified by the full-width at half maximum of the point-spread function - from 0.80 to 0.65 mm - and yielded subtle but perceptible improvement in high-contrast detail of bone (e.g., temporal bone). Standard technique protocols for the head and body imparted absorbed dose of 16 and 18 mGy, respectively. For low-to-medium contrast (<100 HU) imaging at fixed spatial resolution (1.3 mm edge-spread function) and fixed dose (6.7 mGy), PLH improved CNR over FBP by +48% in the head and +35% in the body. Evaluation at different dose levels demonstrated 30% increase in CNR at 62% of the dose in the head and 90% increase in CNR at 50% dose in the body. CONCLUSIONS: A variety of improvements in FBP implementation (geometric calibration, truncation and saturation effects, and isotropic apodization) offer the potential for improved image quality and reduced radiation dose on the O-arm system. Further gains are possible with MBIR, including improved soft-tissue visualization, low-dose imaging protocols, and extension to methods that naturally incorporate prior information of patient anatomy and/or surgical instrumentation.
Asunto(s)
Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador/métodos , Dosis de Radiación , Calibración , Humanos , Periodo Intraoperatorio , Fantasmas de Imagen , Control de Calidad , Relación Señal-RuidoRESUMEN
Cone-beam CT (CBCT) systems commonly incorporate a flat-panel detector (FPD) with multiple-gain readout capability to reduce electronic noise and extend dynamic range. In this work, we report a penalized weighted least-squares (PWLS) method for CBCT image reconstruction with a system model that includes the electronic noise characteristics of FPDs, including systems with dynamic-gain or dual-gain (DG) readout in which the electronic noise is spatially varying. Statistical weights in PWLS were modified to account for the contribution of the electronic noise (algorithm denoted [Formula: see text]), and the method was combined with a certainty-based approach that improves the homogeneity of spatial resolution (algorithm denoted [Formula: see text]). The methods were tested in phantom studies designed to stress DG readout characteristics and translated to a clinical study for CBCT of patients with head traumas. The [Formula: see text] method demonstrated superior noise-resolution tradeoffs compared to filtered back-projection (FBP) and conventional PWLS. For example, with spatial resolution (edge-spread function width) matched at 0.65 mm, [Formula: see text] reduced variance by 28%-39% and 15%-25% compared to FBP and PWLS, respectively. The [Formula: see text] method achieved more homogeneous spatial resolution than [Formula: see text] while maintaining similar variance reduction. These findings were confirmed in clinical studies, which showed ~20% variance reduction in peripheral regions of the brain, potentially improving visual image quality in detection of epidural and/or subdural intracranial hemorrhage. The results are consistent with the general notion that incorporating a more accurate system model improves performance in optimization-based statistical CBCT reconstruction-in this case, a more accurate model for (spatially varying) electronic noise to improve detectability of low-contrast lesions.