Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 157(7): 1644-1656, 2014 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-24949974

RESUMEN

Because apoptosis of infected cells can limit virus production and spread, some viruses have co-opted prosurvival genes from the host. This includes the Epstein-Barr virus (EBV) gene BHRF1, a homolog of human Bcl-2 proteins that block apoptosis and are associated with cancer. Computational design and experimental optimization were used to generate a novel protein called BINDI that binds BHRF1 with picomolar affinity. BINDI recognizes the hydrophobic cleft of BHRF1 in a manner similar to other Bcl-2 protein interactions but makes many additional contacts to achieve exceptional affinity and specificity. BINDI induces apoptosis in EBV-infected cancer lines, and when delivered with an antibody-targeted intracellular delivery carrier, BINDI suppressed tumor growth and extended survival in a xenograft disease model of EBV-positive human lymphoma. High-specificity-designed proteins that selectively kill target cells may provide an advantage over the toxic compounds used in current generation antibody-drug conjugates.


Asunto(s)
Herpesvirus Humano 4/química , Ingeniería de Proteínas , Proteínas/farmacología , Proteínas Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Biología Computacional , Cristalografía por Rayos X , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4/fisiología , Xenoinjertos , Humanos , Linfoma de Células B/tratamiento farmacológico , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Trasplante de Neoplasias , Proteínas/química , Proteínas/metabolismo , Alineación de Secuencia , Proteínas Virales/química
2.
Mol Pharm ; 14(5): 1450-1459, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28277671

RESUMEN

Peptides derived from the third Bcl-2 homology domain (BH3) renormalize apoptotic signaling by antagonizing prosurvival Bcl-2 family members. These potential peptide drugs exhibit therapeutic activities but are limited by barriers including short circulation half-lives and poor penetration into cells. A diblock polymeric micelle carrier for the BIM BH3 peptide was recently described that demonstrated antitumor activity in a B-cell lymphoma xenograft model [Berguig et al., Mol. Ther. 2015, 23, 907-917]. However, the disulfide linkage used to conjugate the BIM peptide was shown to have nonoptimal blood stability. Here we describe a peptide macromonomer composed of BIM capped with a four amino acid cathepsin B substrate (FKFL) that possesses high blood stability and is cleaved to release the drug inside of target cells. Employing RAFT polymerization, the peptide macromonomer was directly integrated into a multifunctional diblock copolymer tailored for peptide delivery. The first polymer block was made as a macro-chain transfer agent (CTA) and composed of a pH-responsive endosomolytic formulation of N,N-diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA). The second polymer block was a copolymer of the peptide and polyethylene glycol methacrylate (PEGMA). PEGMA monomers of two sizes were investigated (300 Da and 950 Da). Protein gel analysis, high performance liquid chromatography, and coupled mass spectrometry (MS) showed that incubation with cathepsin B specifically cleaved the FKFL linker and released active BIM peptide with PEGMA300 but not with PEGMA950. MALDI-TOF MS showed that incubation of the peptide monomers alone in human serum resulted in partial cleavage at the FKFL linker after 12 h. However, formulation of the peptides into polymers protected against serum-mediated peptide degradation. Dynamic light scattering (DLS) demonstrated pH-dependent micelle disassembly (25 nm polymer micelles at pH 7.4 versus 6 nm unimers at pH 6.6), and a red blood cell lysis assay showed a corresponding increase in membrane destabilizing activity (<1% lysis at pH 7.4 versus 95% lysis at pH 6.6). The full carrier-drug system successfully induced apoptosis in SKOV3 ovarian cancer cells in a dose-dependent manner, in comparison to a control polymer containing a scrambled BIM peptide sequence. Mechanistic analysis verified target-dependent activation of caspase 3/7 activity (8.1-fold increase), and positive annexin V staining (72% increase). The increased blood stability of this enzyme-cleavable peptide polymer design, together with the direct polymerization approach that eliminated postsynthetic conjugation steps, suggests that this new carrier design could provide important benefits for intracellular peptide drug delivery.


Asunto(s)
Micelas , Péptidos/química , Polímeros/química , Catepsina B/química , Línea Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Metacrilatos/química , Polietilenglicoles/química
3.
Mol Pharm ; 14(6): 1988-1997, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28394614

RESUMEN

Lung-based intracellular bacterial infections remain one of the most challenging infectious disease settings. For example, the current standard for treating Franciscella tularensis pneumonia (tularemia) relies on administration of oral or intravenous antibiotics that poorly achieve and sustain pulmonary drug bioavailability. Inhalable antibiotic formulations are approved and in clinical development for upper respiratory infections, but sustained drug dosing from inhaled antibiotics against alveolar intracellular infections remains a current unmet need. To provide an extended therapy against alveolar intracellular infections, we have developed a macromolecular therapeutic platform that provides sustained local delivery of ciprofloxacin with controlled dosing profiles. Synthesized using RAFT polymerization, these macromolecular prodrugs characteristically have high drug loading (16-17 wt % drug), tunable hydrolysis kinetics mediated by drug linkage chemistry (slow-releasing alkyllic vs fast-releasing phenolic esters), and, in general, represent new fully synthetic nanotherapeutics with streamlined manufacturing profiles. In aerosolized and completely lethal F.t. novicida mouse challenge models, the fast-releasing ciprofloxacin macromolecular prodrug provided high cure efficiencies (75% survival rate under therapeutic treatment), and the importance of release kinetics was demonstrated by the inactivity of the similar but slow-releasing prodrug system. Pharmacokinetics and biodistribution studies further demonstrated that the efficacious fast-releasing prodrug retained drug dosing in the lung above the MIC over a 48 h period with corresponding Cmax/MIC and AUC0-24h/MIC ratios being greater than 10 and 125, respectively; the thresholds for optimal bactericidal efficacy. These findings identify the macromolecular prodrug platform as a potential therapeutic system to better treat alveolar intracellular infections such as F. tularensis, where positive patient outcomes require tailored antibiotic pharmacokinetic and treatment profiles.


Asunto(s)
Antibacterianos/uso terapéutico , Ciprofloxacina/uso terapéutico , Administración Intranasal , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacocinética , Ciprofloxacina/administración & dosificación , Ciprofloxacina/farmacocinética , Modelos Animales de Enfermedad , Femenino , Francisella tularensis/efectos de los fármacos , Francisella tularensis/patogenicidad , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Distribución Tisular
4.
Biochemistry ; 55(37): 5201-3, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27603565

RESUMEN

We report a detailed study of a point mutation of the crucial binding site residue, D128, in the biotin-streptavidin complex. The conservative substitution, D128N, preserves the detailed structure observed for the wild-type complex but has an only minimal impact on biotin binding, even though previous experimental and computational studies suggested that a charged D128 residue was crucial for high-affinity binding. These results show clearly that the fundamental basis for streptavidin's extremely strong biotin binding affinity is more complex than assumed and illustrate some of the challenges that may arise when analyzing extremely strong ligand-protein binding interactions.


Asunto(s)
Ácido Aspártico/metabolismo , Biotina/metabolismo , Mutación , Estreptavidina/metabolismo , Sitios de Unión , Cristalografía , Estreptavidina/química
5.
Anal Chem ; 88(21): 10404-10410, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27686335

RESUMEN

Magnetic microbeads exhibit rapid separation characteristics and are widely employed for biomolecule and cell isolations in research laboratories, clinical diagnostics assays, and cell therapy manufacturing. However, micrometer particle diameters compromise biomarker recognition, which leads to long incubation times and significant reagent demands. Here, a stimuli-responsive binary reagent system is presented that combines the nanoscale benefits of efficient biomarker recognition and the microscale benefits of rapid magnetic separation. This system comprises magnetic nanoparticles and polymer-antibody (Ab) conjugates that transition from hydrophilic nanoscale reagents to microscale aggregates in response to temperature stimuli. The binary reagent system was benchmarked against Ab-labeled Dynabeads in terms of biomarker isolation kinetics, assay speed, and reagent needs. Surface plasmon resonance (SPR) measurements showed that polymer conjugation did not significantly alter the Ab's binding affinity or kinetics. ELISA analysis showed that the unconjugated Ab, polymer-Ab conjugates, and Ab-labeled Dynabeads exhibited similar equilibrium dissociation constants (Kd), ∼2 nM. However, the binary reagent system isolated HIV p24 antigen from spiked serum specimens (150 pg/mL) much more quickly than Dynabeads, which resulted in shorter binding times by tens of minutes, or about 30-50% shorter overall assay times. The binary reagent system showed improved performance because the Ab molecules were not conjugated to large, solid microparticle surfaces. This stimuli-responsive binary reagent system illustrates the potential advantages of nanoscale reagents in molecule and cell isolations for both research and clinical applications.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Proteína p24 del Núcleo del VIH/sangre , Inmunoconjugados/química , Nanopartículas de Magnetita/química , Polímeros/química , Resonancia por Plasmón de Superficie/métodos , Biomarcadores/sangre , VIH/aislamiento & purificación , Proteína p24 del Núcleo del VIH/análisis , Infecciones por VIH/sangre , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indicadores y Reactivos , Multimerización de Proteína , Temperatura
6.
Mol Ther ; 23(5): 907-917, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25669432

RESUMEN

Antibodies armed with biologic drugs could greatly expand the therapeutic potential of antibody-drug conjugates for cancer therapy, broadening their application to disease targets currently limited by intracellular delivery barriers. Additional selectivity and new therapeutic approaches could be realized with intracellular protein drugs that more specifically target dysregulated pathways in hematologic cancers and other malignancies. A multifunctional polymeric delivery system for enhanced cytosolic delivery of protein drugs has been developed that incorporates endosomal-releasing activity, antibody targeting, and a biocompatible long-chain ethylene glycol component for optimized safety, pharmacokinetics, and tumor biodistribution. The pH-responsive polymeric micelle carrier, with an internalizing anti-CD22 monoclonal targeting antibody, effectively delivered a proapoptotic Bcl-2 interacting mediator (BIM) peptide drug that suppressed tumor growth for the duration of treatment and prolonged survival in a xenograft mouse model of human B-cell lymphoma. Antitumor drug activity was correlated with a mechanistic induction of the Bcl-2 pathway biomarker cleaved caspase-3 and a marked decrease in the Ki-67 proliferation biomarker. Broadening the intracellular target space by more effective delivery of protein/peptide drugs could expand the repertoire of antibody-drug conjugates to currently undruggable disease-specific targets and permit tailored drug strategies to stratified subpopulations and personalized medicines.


Asunto(s)
Anticuerpos Monoclonales , Sistemas de Liberación de Medicamentos , Inmunoconjugados/farmacología , Péptidos , Animales , Apoptosis/efectos de los fármacos , Disponibilidad Biológica , Biomarcadores , Línea Celular Tumoral , Citocromos c/biosíntesis , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Humanos , Inmunoconjugados/química , Inmunoconjugados/farmacocinética , Inmunoconjugados/toxicidad , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/metabolismo , Linfoma de Células B/mortalidad , Linfoma de Células B/patología , Ratones , Micelas , Polímeros/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Nanomedicine ; 12(7): 2031-2041, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27184097

RESUMEN

Carbohydrate receptors on alveolar macrophages are attractive targets for receptor-mediated delivery of nanostructured therapeutics. In this study, we employed reversible addition fragmentation chain transfer polymerization to synthesize neoglycopolymers, consisting of mannose- and galactose methacrylate-based monomers copolymerized with cholesterol methacrylate for use in functional liposome studies. Glycopolymer-functional liposomes were employed to elucidate macrophage mannose receptor (CD206) and macrophage galactose-type lectin (CD301) targeting in both primary macrophage and immortal macrophage cell lines. Expression of CD206 and CD301 was observed to vary significantly between cell lines (murine alveolar macrophage, murine bone marrow-derived macrophage, RAW264.7, and MH-S), which has significant implications in in vitro targeting and uptake studies. Synthetic glycopolymers and glycopolymer augmented liposomes demonstrated specific receptor-mediated uptake in a manner dependent on carbohydrate receptor expression. These results establish a platform capable of probing endogenous carbohydrate receptor-mediated targeting via glycofunctional nanomaterials.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Liposomas , Macrófagos Alveolares , Animales , Línea Celular , Portadores de Fármacos , Humanos , Lectinas , Macrófagos , Manosa , Ratones
8.
Bioconjug Chem ; 26(1): 29-38, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25405605

RESUMEN

Immunoassays have been translated into microfluidic device formats, but significant challenges relating to upstream sample processing still limit their applications. Here, stimuli-responsive polymer-antibody conjugates are utilized in a microfluidic immunoassay to enable rapid biomarker purification and enrichment as well as sensitive detection. The conjugates were constructed by covalently grafting poly(N-isopropylacrylamide) (PNIPAAm), a thermally responsive polymer, to the lysine residues of anti-prostate specific antigen (PSA) Immunoglobulin G (IgG) using carbodiimide chemistry via the polymer end-carboxylate. The antibody-PNIPAAm (capture) conjugates and antibody-alkaline phosphatase (detection) conjugates formed sandwich immunocomplexes via PSA binding in 50% human plasma. The complexes were loaded into a recirculating poly(dimethylsiloxane) microreactor, equipped with micropumps and transverse flow features, for subsequent separation, enrichment, and quantification. The immunocomplexes were captured by heating the solution to 39 °C, mixed over the transverse features for 2 min, and washed with warm buffer. In one approach, the assay utilized immunocomplex solution that was contained in an 80 nL microreactor, which was loaded with solution at room temperature and subsequently heated to 39 °C. The assay took 25 min and resulted in 37 pM PSA limit of detection (LOD), which is comparable to a plate ELISA employing the same antibody pair. In another approach, the microreactor was preheated to 39 °C, and immunocomplex solution was flowed through the reactor, mixed, and washed. When the specimen volume was increased to 7.5 µL by repeating the capture process three times, the higher specimen volume led to immunocomplex enrichment within the microreactor. The resulting assay LOD was 0.5 pM, which is 2 orders of magnitude lower than the plate ELISA. Both approaches generate antigen specific signal over a clinically significant range. The sample processing capabilities and subsequent utility in a biomarker assay demonstrate the opportunity for stimuli-responsive polymer-protein conjugates in novel diagnostic technologies.


Asunto(s)
Inmunoensayo/métodos , Técnicas Analíticas Microfluídicas/métodos , Resinas Acrílicas/química , Biomarcadores/sangre , Biomarcadores/química , Dimetilpolisiloxanos/química , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Indicadores y Reactivos/química , Antígeno Prostático Específico/sangre , Antígeno Prostático Específico/química , Antígeno Prostático Específico/inmunología , Antígeno Prostático Específico/aislamiento & purificación
9.
J Nanosci Nanotechnol ; 14(3): 2557-62, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24745263

RESUMEN

Herein, we report the synthesis and characterization of monodisperse 'smart' nanogels that exhibit a sharp volume phase transition at physiologically relevant temperatures and pH values. The nanogels were prepared by precipitation copolymerization of N-isopropylacrylamide (NIPAAm) and propylacrylic acid (PAA). Briefly, the reaction was performed using a PAA feed of between 0 and 10 mol% in the presence of a crosslinker at 70 degrees C. The size of the nanogel particles was determined as a function of pH and temperature using dynamic light scattering (DLS). At room temperature, the NIPAAm-PAA nanogels were discrete, spherical structures with diameters ranging from 200 to 250 nm. The hydrodynamic diameter of the nanogels decreased to ca. 100-150 nm when the solution temperature was increased to 37 degrees C. At 37 degrees C, when the pKa was below that of the NIPAAm-PAA (ca. 6.0), the gels collapsed and aggregated. However, at 37 degrees C and a physiological pH of 7.4, the nanogels did not fully collapse due to the charge-charge repulsion derived from the ionized carboxyl groups of the PAA. Similar phase transition behavior was observed with the corresponding linear copolymers. Thus, such nanogel particles could be useful for releasing drugs in regions of local acidosis, including sites of infection, tumors, ischemia, and intracellular endosomes.


Asunto(s)
Nanopartículas/química , Nanotecnología/métodos , Acrilamidas/química , Acrilatos/química , Sistemas de Liberación de Medicamentos , Geles , Concentración de Iones de Hidrógeno , Luz , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Dispersión de Radiación , Temperatura
10.
ACS Cent Sci ; 10(3): 666-675, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38559305

RESUMEN

The Stimulator of Interferon Genes (STING) pathway is a promising target for cancer immunotherapy. Despite recent advances, therapies targeting the STING pathway are often limited by routes of administration, suboptimal STING activation, or off-target toxicity. Here, we report a dendritic cell (DC)-targeted polymeric prodrug platform (polySTING) that is designed to optimize intracellular delivery of a diamidobenzimidazole (diABZI) small-molecule STING agonist while minimizing off-target toxicity after parenteral administration. PolySTING incorporates mannose targeting ligands as a comonomer, which facilitates its uptake in CD206+/mannose receptor+ professional antigen-presenting cells (APCs) in the tumor microenvironment (TME). The STING agonist is conjugated through a cathepsin B-cleavable valine-alanine (VA) linker for selective intracellular drug release after receptor-mediated endocytosis. When administered intravenously in tumor-bearing mice, polySTING selectively targeted CD206+/mannose receptor+ APCs in the TME, resulting in increased cross-presenting CD8+ DCs, infiltrating CD8+ T cells in the TME as well as maturation across multiple DC subtypes in the tumor-draining lymph node (TDLN). Systemic administration of polySTING slowed tumor growth in a B16-F10 murine melanoma model as well as a 4T1 murine breast cancer model with an acceptable safety profile. Thus, we demonstrate that polySTING delivers STING agonists to professional APCs after systemic administration, generating efficacious DC-driven antitumor immunity with minimal side effects. This new polymeric prodrug platform may offer new opportunities for combining efficient targeted STING agonist delivery with other selective tumor therapeutic strategies.

11.
12.
Adv Healthc Mater ; 13(11): e2303910, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38180445

RESUMEN

Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.


Asunto(s)
Nanopartículas , Nanopartículas/química , Animales , Ratones , Proteínas/química , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/química , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/agonistas
13.
Sci Adv ; 10(16): eadk4492, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38640243

RESUMEN

Approximately 3.3 billion people live with the threat of Plasmodium vivax malaria. Infection can result in liver-localized hypnozoites, which when reactivated cause relapsing malaria. This work demonstrates that an enzyme-cleavable polymeric prodrug of tafenoquine addresses key requirements for a mass administration, eradication campaign: excellent subcutaneous bioavailability, complete parasite control after a single dose, improved therapeutic window compared to the parent oral drug, and low cost of goods sold (COGS) at less than $1.50 per dose. Liver targeting and subcutaneous dosing resulted in improved liver:plasma exposure profiles, with increased efficacy and reduced glucose 6-phosphate dehydrogenase-dependent hemotoxicity in validated preclinical models. A COGS and manufacturability analysis demonstrated global scalability, affordability, and the ability to redesign this fully synthetic polymeric prodrug specifically to increase global equity and access. Together, this polymer prodrug platform is a candidate for evaluation in human patients and shows potential for P. vivax eradication campaigns.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Aminoquinolinas/efectos adversos , Malaria/tratamiento farmacológico , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/inducido químicamente , Hígado
14.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 968-77, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23695241

RESUMEN

Circular permutation of streptavidin was carried out in order to investigate the role of a main-chain amide in stabilizing the high-affinity complex of the protein and biotin. Mutant proteins CP49/48 and CP50/49 were constructed to place new N-termini at residues 49 and 50 in a flexible loop involved in stabilizing the biotin complex. Crystal structures of the two mutants show that half of each loop closes over the binding site, as observed in wild-type streptavidin, while the other half adopts the open conformation found in the unliganded state. The structures are consistent with kinetic and thermodynamic data and indicate that the loop plays a role in enthalpic stabilization of the bound state via the Asn49 amide-biotin hydrogen bond. In wild-type streptavidin, the entropic penalties of immobilizing a flexible portion of the protein to enhance binding are kept to a manageable level by using a contiguous loop of medium length (six residues) which is already constrained by its anchorage to strands of the ß-barrel protein. A molecular-dynamics simulation for CP50/49 shows that cleavage of the binding loop results in increased structural fluctuations for Ser45 and that these fluctuations destabilize the streptavidin-biotin complex.


Asunto(s)
Proteínas Bacterianas/química , Biotina/análogos & derivados , Proteínas Mutantes/química , Estreptavidina/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Biotina/química , Biotina/metabolismo , Rastreo Diferencial de Calorimetría , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis , Proteínas Mutantes/metabolismo , Conformación Proteica , Estreptavidina/metabolismo , Termodinámica , Difracción de Rayos X
15.
Anal Chem ; 85(22): 10869-77, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24131300

RESUMEN

In this study, a non-native chemical species, bromodeoxyuridine (BrdU), was imaged within single HeLa cells using time-of-flight secondary ion mass spectrometry (TOF-SIMS). z-corrected 3D images were reconstructed that accurately portray the distribution of intracellular BrdU as well as other intracellular structures. The BrdU was localized to the nucleus of cells, whereas structures composed of CxHyOz(-) species were located in bundles on the periphery of cells. The CxHyOz(-) subcellular features had a spatial resolution at or slightly below a micrometer (900 nm), as defined by the distance between the 16% and 84% intensities in a line scan across the edge of the features. Additionally, important parameters influencing the quality of the HeLa cell 3D images were investigated. Atomic force microscopy measurements revealed that the HeLa cells were sputtered at a rate of approximately 4 nm per 10(13) C60(+) ions/cm(2) at 10 keV and a 45° incident angle. Optimal 3D images were acquired using a Bi3(+) liquid metal ion gun operating in the simultaneous high mass and spatial resolution mode.


Asunto(s)
Imagenología Tridimensional/métodos , Microscopía de Fuerza Atómica/métodos , Espectrometría de Masa de Ion Secundario/métodos , Antimetabolitos , Bromodesoxiuridina , Células HeLa , Humanos , Fracciones Subcelulares
16.
Bioconjug Chem ; 24(3): 398-407, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23360541

RESUMEN

RNA interference (RNAi) drugs have significant therapeutic potential, but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl)methacrylamide-co-N-(2-(pyridin-2-yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions and a second ampholytic block composed of propylacrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization with an overall molecular weight of 22 000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 µg/mL, respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90% mRNA knockdown and 65% protein knockdown at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates demonstrate the potential utility of this carrier design for delivering therapeutic siRNA drugs.


Asunto(s)
Técnicas de Transferencia de Gen , Micelas , Polímeros/administración & dosificación , Polímeros/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/química , Eritrocitos/efectos de los fármacos , Células HeLa , Humanos , ARN Interferente Pequeño/genética
17.
Acc Chem Res ; 45(7): 1089-99, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-22242774

RESUMEN

Therapeutic gene delivery can alter protein function either through the replacement of nonfunctional genes to restore cellular health or through RNA interference (RNAi) to mask mutated and harmful genes. Researchers have investigated a range of nucleic acid-based therapeutics as potential treatments for hereditary, acquired, and infectious diseases. Candidate drugs include plasmids that induce gene expression and small, interfering RNAs (siRNAs) that silence target genes. Because of their self-assembly with nucleic acids into virus-sized nanoparticles and high transfection efficiency in vitro, cationic polymers have been extensively studied for nucleic acid delivery applications, but toxicity and particle stability have limited the clinical applications of these systems. The advent of living free radical polymerization has improved the quality, control, and reproducibility of these synthesized materials. This process yields well-defined, narrowly disperse materials with designed architectures and molecular weights. As a result, researchers can study the effects of polymer architecture and molecular weight on transfection efficiency and cytotoxicity, which will improve the design of next-generation vectors. In this Account, we review findings from structure-function studies that have elucidated key design motifs necessary for the development of effective nucleic acid vectors. Researchers have used robust methods such as atom transfer radical polymerization (ATRP), reverse addition-fragmentation chain transfer polymerization (RAFT), and ring-opening metastasis polymerization (ROMP) to engineer materials that enhance extracellular stability and cellular specificity and decrease toxicity. In addition, we discuss polymers that are biodegradable, form supramolecular structures, target specific cells, or facilitate endosomal release. Finally, we describe promising materials with a range of in vivo applications from pulmonary gene delivery to DNA vaccines.


Asunto(s)
Radicales Libres/química , Ácidos Nucleicos/metabolismo , Polímeros/química , Animales , Ratones , Ácidos Nucleicos/genética , Plásmidos/genética , Plásmidos/metabolismo , Polimerizacion , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transfección
18.
Langmuir ; 29(18): 5388-93, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23581256

RESUMEN

A microfluidic surface trap was developed for capturing pH-sensitive nanoparticles via a photoinitiated proton-releasing reaction of o-nitrobenzaldehyde (o-NBA) that reduces the solution pH in microchannels. The surface trap and nanoparticles were both modified with a pH-responsive polymer-poly(N-isorpopylacylamide-co-propylacrylic acid), P(NIPAAm-co-PAA). The o-NBA-coated microchannel walls demonstrated rapid proton release upon UV light irradiation, allowing the buffered solution pH in the microchannel to decrease from 7.4 to 4.5 in 60 s. The low solution pH switched the polymer-modified surfaces to be more hydrophobic, which enabled the capture of the pH-sensitive nanobeads onto the trap. When a photomask was utilized to limit the UV irradiation to a specific channel region, we were able to restrict the particle separation to only the exposed region. Via control of the UV irradiation, this technique enables not only prompt pH changes within the channel but also the capture of target molecules at specific channel locations.


Asunto(s)
Nanopartículas/química , Rayos Ultravioleta , Benzaldehídos/química , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas Analíticas Microfluídicas/instrumentación , Procesos Fotoquímicos , Polímeros/química , Propiedades de Superficie
19.
J Control Release ; 356: 232-241, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878319

RESUMEN

Peptide cancer vaccines have had limited clinical success despite their safety, characterization and production advantages. We hypothesize that the poor immunogenicity of peptides can be surmounted by delivery vehicles that overcome the systemic, cellular and intracellular drug delivery barriers faced by peptides. Here, we introduce Man-VIPER, a self-assembling (40-50 nm micelles), pH-sensitive, mannosylated polymeric peptide delivery platform that targets dendritic cells in the lymph nodes, encapsulates peptide antigens at physiological pH, and facilitates endosomal release of antigens at acidic endosomal pH through a conjugated membranolytic peptide melittin. We used d-melittin to improve the safety profile of the formulation without compromising the lytic properties. We evaluated polymers with both releasable (Man-VIPER-R) or non-releasable (Man-VIPER-NR) d-melittin. Both Man-VIPER polymers exhibited superior endosomolysis and antigen cross-presentation compared to non-membranolytic d-melittin-free analogues (Man-AP) in vitro. In vivo, Man-VIPER polymers demonstrated an adjuvanting effect, induced the proliferation of antigen-specific cytotoxic T cells and helper T cells compared to free peptides and Man-AP. Remarkably, antigen delivery with Man-VIPER-NR generated significantly more antigen-specific cytotoxic T cells than Man-VIPER-R in vivo. As our candidate for a therapeutic vaccine, Man-VIPER-NR exerted superior efficacy in a B16F10-OVA tumor model. These results highlight Man-VIPER-NR as a safe and powerful peptide cancer vaccine platform for cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Humanos , Polímeros/química , Antígenos , Péptidos/farmacología , Sistemas de Liberación de Medicamentos , Presentación de Antígeno , Neoplasias/terapia , Células Dendríticas
20.
Biochemistry ; 51(2): 597-607, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22145986

RESUMEN

We report a point mutation in the second contact shell of the high-affinity streptavidin-biotin complex that appears to reduce binding affinity through transmitted effects on equilibrium dynamics. The Y54F streptavidin mutation causes a 75-fold loss of binding affinity with 73-fold faster dissociation, a large loss of binding enthalpy (ΔΔH = 3.4 kcal/mol at 37 °C), and a small gain in binding entropy (TΔΔS = 0.7 kcal/mol). The removed Y54 hydroxyl is replaced by a water molecule in the bound structure, but there are no observable changes in structure in the first contact shell and no additional changes surrounding the mutation. Molecular dynamics simulations reveal a large increase in the atomic fluctuation amplitudes for W79, a key biotin contact residue, compared to the fluctuation amplitudes in the wild-type. The increased W79 atomic fluctuation amplitudes are caused by loss of water-mediated hydrogen bonds between the Y54 hydroxyl group and peptide backbone atoms in and near W79. We propose that the increased atomic fluctuation amplitudes diminish the integrity of the W79-biotin interaction and represents a loosening of the "tryptophan collar" that is critical to the slow dissociation and high affinity of streptavidin-biotin binding. These results illustrate how changes in protein dynamics distal to the ligand binding pocket can have a profound impact on ligand binding, even when equilibrium structure is unperturbed.


Asunto(s)
Biotina/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación Puntual , Estreptavidina/química , Estreptavidina/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Cinética , Simulación de Dinámica Molecular , Proteínas Mutantes/genética , Unión Proteica , Conformación Proteica , Estreptavidina/genética , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA