Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2303044, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38507713

RESUMEN

The mechanisms behind the pro-healing effects of multicellular, bioengineered allogeneic cellularized constructs (BACC) are not known. Macrophages are key regulators of every phase of the wound healing process and the primary cells that mediate the response to biomaterials. It is hypothesized that cells within the BACC modulate macrophage behavior, which may contribute to the mechanism by which BACC promotes healing. To probe the influence of cells within the BACC compared to effects of the underlying collagen substrate, primary human macrophages are cultured in direct or indirect contact with BACC or with the same collagen substrate used in the BACC manufacturing. Macrophage phenotype is characterized over time via multiplex gene expression, protein secretion, multidimensional flow cytometry, and functional assays with fibroblasts and endothelial cells. The BACC causes macrophages to exhibit a predominately reparative phenotype over time compared to relevant collagen substrate controls, with multiple subpopulations expressing both pro-inflammatory and reparative markers. Conditioned media from macrophage-BACC co-cultures causes distinct effects on fibroblast and endothelial cell proliferation, migration, and network formation. Given the critical role of the reparative macrophage phenotype in wound healing, these results suggest that modulation of macrophage phenotype may be a critical part of the mechanisms behind BACC's pro-healing effects.

2.
Adv Drug Deliv Rev ; 199: 114979, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37394101

RESUMEN

Although most tissue types are capable of some form of self-repair and regeneration, injuries that are larger than a critical threshold or those occurring in the setting of certain diseases can lead to impaired healing and ultimately loss of structure and function. The immune system plays an important role in tissue repair and must be considered in the design of therapies in regenerative medicine. In particular, macrophage cell therapy has emerged as a promising strategy that leverages the reparative roles of these cells. Macrophages are critical for successful tissue repair and accomplish diverse functions throughout all phases of the process by dramatically shifting in phenotypes in response to microenvironmental cues. Depending on their response to various stimuli, they may release growth factors, support angiogenesis, and facilitate extracellular matrix remodeling. However, this ability to rapidly shift phenotype is also problematic for macrophage cell therapy strategies, because adoptively transferred macrophages fail to maintain therapeutic phenotypes following their administration to sites of injury or inflammation. Biomaterials are a potential way to control macrophage phenotype in situ while also enhancing their retention at sites of injury. Cell delivery systems incorporated with appropriately designed immunomodulatory signals have potential to achieve tissue regeneration in intractable injuries where traditional therapies have failed. Here we explorecurrent challenges in macrophage cell therapy, especially retention and phenotype control, how biomaterials may overcome them, and opportunities for next generation strategies. Biomaterials will be an essential tool to advance macrophage cell therapy for widespread clinical applications.

3.
Methods Mol Biol ; 2626: 399-444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36715918

RESUMEN

Citizen science is a productive approach to include non-scientists in research efforts that impact particular issues or communities. In most cases, scientists at advanced career stages design high-quality, exciting projects that enable citizen contribution, a crowdsourcing process that drives discovery forward and engages communities. The challenges of having citizens design their own research with no or limited training and providing access to laboratory tools, reagents, and supplies have limited citizen science efforts. This leaves the incredible life experiences and immersion of citizens in communities that experience health disparities out of the research equation, thus hampering efforts to address community health needs with a full picture of the challenges that must be addressed. Here, we present a robust and reproducible approach that engages participants from Grade 5 through adult in research focused on defining how diet impacts disease signaling. We leverage the powerful genetics, cell biology, and biochemistry of Drosophila oogenesis to define how nutrients impact phenotypes associated with genetic mutants that are implicated in cancer and diabetes. Participants lead the project design and execution, flipping the top-down hierarchy of the prevailing scientific culture to co-create research projects and infuse the research with cultural and community relevance.


Asunto(s)
Drosophila , Salud Pública , Animales , Investigación
4.
ACS Biomater Sci Eng ; 8(8): 3526-3541, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35838679

RESUMEN

Cyclic strain generated at the cell-material interface is critical for the engraftment of biomaterials. Mechanosensitive immune cells, macrophages regulate the host-material interaction immediately after implantation by priming the environment and remodeling ongoing regenerative processes. This study investigated the ability of mechanically active scaffolds to modulate macrophage function in vitro and in vivo. Remotely actuated magnetic scaffolds enhance the phenotype of murine classically activated (M1) macrophages, as shown by the increased expression of the M1 cell-surface marker CD86 and increased secretion of multiple M1 cytokines. When scaffolds were implanted subcutaneously into mice and treated with magnetic stimulation for 3 days beginning at either day 0 or day 5 post-implantation, the cellular infiltrate was enriched for host macrophages. Macrophage expression of the M1 marker CD86 was increased, with downstream effects on vascularization and the foreign body response. Such effects were not observed when the magnetic treatment was applied at later time points after implantation (days 12-15). These results advance our understanding of how remotely controlled mechanical cues, namely, cyclic strain, impact macrophage function and demonstrate the feasibility of using mechanically active nanomaterials to modulate the host response in vivo.


Asunto(s)
Macrófagos , Andamios del Tejido , Animales , Materiales Biocompatibles , Macrófagos/metabolismo , Ratones , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA