Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytopathology ; 106(4): 355-61, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26623995

RESUMEN

CYP51 encodes the target site of the azole class of fungicides widely used in plant protection. Some ascomycete pathogens carry two CYP51 paralogs called CYP51A and CYP51B. A recent analysis of CYP51 sequences in 14 European isolates of the barley scald pathogen Rhynchosporium commune revealed three CYP51 paralogs, CYP51A, CYP51B, and a pseudogene called CYP51A-p. The same analysis showed that CYP51A exhibits a presence/absence polymorphism, with lower sensitivity to azole fungicides associated with the presence of a functional CYP51A. We analyzed a global collection of nearly 400 R. commune isolates to determine if these findings could be extended beyond Europe. Our results strongly support the hypothesis that CYP51A played a key role in the emergence of azole resistance globally and provide new evidence that the CYP51A gene in R. commune has further evolved, presumably in response to azole exposure. We also present evidence for recent long-distance movement of evolved CYP51A alleles, highlighting the risk associated with movement of fungicide resistance alleles among international trading partners.


Asunto(s)
Ascomicetos/enzimología , Azoles/farmacología , Sistema Enzimático del Citocromo P-450/genética , Variación Genética , Hordeum/microbiología , Enfermedades de las Plantas/microbiología , Alelos , Ascomicetos/efectos de los fármacos , Ascomicetos/genética , Farmacorresistencia Fúngica/genética , Europa (Continente) , Proteínas Fúngicas/genética , Fungicidas Industriales/farmacología , Análisis de Secuencia de ADN
2.
PLoS One ; 9(11): e112523, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25383967

RESUMEN

Genetic drift and selection are ubiquitous evolutionary forces acting to shape genetic variation in populations. While their relative importance has been well studied in plants and animals, less is known about their relative importance in fungal pathogens. Because agro-ecosystems are more homogeneous environments than natural ecosystems, stabilizing selection may play a stronger role than genetic drift or diversifying selection in shaping genetic variation among populations of fungal pathogens in agro-ecosystems. We tested this hypothesis by conducting a QST/FST analysis using agricultural populations of the barley pathogen Rhynchosporium commune. Population divergence for eight quantitative traits (QST) was compared with divergence at eight neutral microsatellite loci (FST) for 126 pathogen strains originating from nine globally distributed field populations to infer the effects of genetic drift and types of selection acting on each trait. Our analyses indicated that five of the eight traits had QST values significantly lower than FST, consistent with stabilizing selection, whereas one trait, growth under heat stress (22°C), showed evidence of diversifying selection and local adaptation (QST>FST). Estimates of heritability were high for all traits (means ranging between 0.55-0.84), and average heritability across traits was negatively correlated with microsatellite gene diversity. Some trait pairs were genetically correlated and there was significant evidence for a trade-off between spore size and spore number, and between melanization and growth under benign temperature. Our findings indicate that many ecologically and agriculturally important traits are under stabilizing selection in R. commune and that high within-population genetic variation is maintained for these traits.


Asunto(s)
Ascomicetos/genética , Flujo Genético , Sitios de Carácter Cuantitativo , Selección Genética , Adaptación Biológica , Ascomicetos/clasificación , Evolución Molecular , Genes Fúngicos , Hordeum/microbiología , Repeticiones de Microsatélite , Modelos Genéticos , Carácter Cuantitativo Heredable
3.
Evol Appl ; 6(3): 524-34, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23745143

RESUMEN

To predict the response of plant pathogens to climate warming, data are needed on current thermal adaptation, the pathogen's evolutionary potential, and the link between them. We conducted a common garden experiment using isolates of the fungal pathogen Rhynchosporium commune from nine barley populations representing climatically diverse locations. Clonal replicates of 126 genetically distinct isolates were assessed for their growth rate at 12°C, 18°C, and 22°C. Populations originating from climates with higher monthly temperature variation had higher growth rate at all three temperatures compared with populations from climates with less temperature fluctuation. Population differentiation in growth rate (Q ST) was significantly higher at 22°C than population differentiation for neutral microsatellite loci (G ST), consistent with local adaptation for growth at higher temperatures. At 18°C, we found evidence for stabilizing selection for growth rate as Q ST was significantly lower than G ST. Heritability of growth rate under the three temperatures was substantial in all populations (0.58-0.76). Genetic variation was lower in populations with higher growth rate at the three temperatures and evolvability increased under heat stress in seven of nine populations. Our findings imply that the distribution of this pathogen is unlikely to be genetically limited under climate warming, due to its high genetic variation and plasticity for thermal tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA