Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(48): E11388-E11396, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30413620

RESUMEN

Located within the brain's ventricles, the choroid plexus produces cerebrospinal fluid and forms an important barrier between the central nervous system and the blood. For unknown reasons, the choroid plexus produces high levels of the protein klotho. Here, we show that these levels naturally decline with aging. Depleting klotho selectively from the choroid plexus via targeted viral vector-induced knockout in Klothoflox/flox mice increased the expression of multiple proinflammatory factors and triggered macrophage infiltration of this structure in young mice, simulating changes in unmanipulated old mice. Wild-type mice infected with the same Cre recombinase-expressing virus did not show such alterations. Experimental depletion of klotho from the choroid plexus enhanced microglial activation in the hippocampus after peripheral injection of mice with lipopolysaccharide. In primary cultures, klotho suppressed thioredoxin-interacting protein-dependent activation of the NLRP3 inflammasome in macrophages by enhancing fibroblast growth factor 23 signaling. We conclude that klotho functions as a gatekeeper at the interface between the brain and immune system in the choroid plexus. Klotho depletion in aging or disease may weaken this barrier and promote immune-mediated neuropathogenesis.


Asunto(s)
Envejecimiento/inmunología , Encéfalo/inmunología , Plexo Coroideo/inmunología , Glucuronidasa/inmunología , Envejecimiento/genética , Animales , Femenino , Glucuronidasa/genética , Hipocampo/inmunología , Humanos , Proteínas Klotho , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología
2.
EMBO J ; 33(12): 1321-40, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24811750

RESUMEN

Neural stem/progenitor cell (NSPC) proliferation and self-renewal, as well as insult-induced differentiation, decrease markedly with age. The molecular mechanisms responsible for these declines remain unclear. Here, we show that levels of NAD(+) and nicotinamide phosphoribosyltransferase (Nampt), the rate-limiting enzyme in mammalian NAD(+) biosynthesis, decrease with age in the hippocampus. Ablation of Nampt in adult NSPCs reduced their pool and proliferation in vivo. The decrease in the NSPC pool during aging can be rescued by enhancing hippocampal NAD(+) levels. Nampt is the main source of NSPC NAD(+) levels and required for G1/S progression of the NSPC cell cycle. Nampt is also critical in oligodendrocytic lineage fate decisions through a mechanism mediated redundantly by Sirt1 and Sirt2. Ablation of Nampt in the adult NSPCs in vivo reduced NSPC-mediated oligodendrogenesis upon insult. These phenotypes recapitulate defects in NSPCs during aging, giving rise to the possibility that Nampt-mediated NAD(+) biosynthesis is a mediator of age-associated functional declines in NSPCs.


Asunto(s)
Células Madre Adultas/metabolismo , Envejecimiento/fisiología , Citocinas/metabolismo , Células-Madre Neurales/metabolismo , Nicotinamida Fosforribosiltransferasa/metabolismo , Animales , Bromodesoxiuridina , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Proliferación Celular , Cruzamientos Genéticos , Cuprizona , Citocinas/deficiencia , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Transgénicos , Mononucleótido de Nicotinamida , Nicotinamida Fosforribosiltransferasa/deficiencia
3.
Neurotherapeutics ; 21(4): e00350, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38599894

RESUMEN

Positive modulation of hepatocyte growth factor (HGF) signaling may represent a promising therapeutic strategy for Alzheimer's disease (AD) based on its multimodal neurotrophic, neuroprotective, and anti-inflammatory effects addressing the complex pathophysiology of neurodegeneration. Fosgonimeton is a small-molecule positive modulator of the HGF system that has demonstrated neurotrophic and pro-cognitive effects in preclinical models of dementia. Herein, we evaluate the neuroprotective potential of fosgonimeton, or its active metabolite, fosgo-AM, in amyloid-beta (Aß)-driven preclinical models of AD, providing mechanistic insight into its mode of action. In primary rat cortical neurons challenged with Aß (Aß1-42), fosgo-AM treatment significantly improved neuronal survival, protected neurite networks, and reduced tau hyperphosphorylation. Interrogation of intracellular events indicated that cortical neurons treated with fosgo-AM exhibited a significant decrease in mitochondrial oxidative stress and cytochrome c release. Following Aß injury, fosgo-AM significantly enhanced activation of pro-survival effectors ERK and AKT, and reduced activity of GSK3ß, one of the main kinases involved in tau hyperphosphorylation. Fosgo-AM also mitigated Aß-induced deficits in Unc-like kinase 1 (ULK1) and Beclin-1, suggesting a potential effect on autophagy. Treatment with fosgo-AM protected cortical neurons from glutamate excitotoxicity, and such effects were abolished in the presence of an AKT or MEK/ERK inhibitor. In vivo, fosgonimeton administration led to functional improvement in an intracerebroventricular Aß25-35 rat model of AD, as it significantly rescued cognitive function in the passive avoidance test. Together, our data demonstrate the ability of fosgonimeton to counteract mechanisms of Aß-induced toxicity. Fosgonimeton is currently in clinical trials for mild-to-moderate AD (NCT04488419; NCT04886063).

4.
Front Neurosci ; 18: 1348157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389786

RESUMEN

Introduction: Amyotrophic lateral sclerosis (ALS), a progressive and fatal neurodegenerative disorder, primarily affects the motor neurons of the brain and spinal cord. Like other neurodegenerative conditions, ongoing pathological processes such as increased inflammation, excitotoxicity, and protein accumulation contribute to neuronal death. Hepatocyte growth factor (HGF) signaling through the MET receptor promotes pro-survival, anti-apoptotic, and anti-inflammatory effects in multiple cell types, including the neurons and support cells of the nervous system. This pleiotropic system is therefore a potential therapeutic target for treatment of neurodegenerative disorders such as ALS. Here, we test the effects of ATH-1105, a small-molecule positive modulator of the HGF signaling system, in preclinical models of ALS. Methods: In vitro, the impact of ATH-1105 on HGF-mediated signaling was assessed via phosphorylation assays for MET, extracellular signal-regulated kinase (ERK), and protein kinase B (AKT). Neuroprotective effects of ATH-1105 were evaluated in rat primary neuron models including spinal motor neurons, motor neuron-astrocyte cocultures, and motor neuron-human muscle cocultures. The anti-inflammatory effects of ATH-1105 were evaluated in microglia- and macrophage-like cell systems exposed to lipopolysaccharide (LPS). In vivo, the impact of daily oral treatment with ATH-1105 was evaluated in Prp-TDP43A315T hemizygous transgenic ALS mice. Results: In vitro, ATH-1105 augmented phosphorylation of MET, ERK, and AKT. ATH-1105 attenuated glutamate-mediated excitotoxicity in primary motor neurons and motor neuron- astrocyte cocultures, and had protective effects on motor neurons and neuromuscular junctions in motor neuron-muscle cocultures. ATH-1105 mitigated LPS-induced inflammation in microglia- and macrophage-like cell systems. In vivo, ATH-1105 treatment resulted in improved motor and nerve function, sciatic nerve axon and myelin integrity, and survival in ALS mice. Treatment with ATH-1105 also led to reductions in levels of plasma biomarkers of inflammation and neurodegeneration, along with decreased pathological protein accumulation (phospho-TDP-43) in the sciatic nerve. Additionally, both early intervention (treatment initiation at 1 month of age) and delayed intervention (treatment initiation at 2 months of age) with ATH-1105 produced benefits in this preclinical model of ALS. Discussion: The consistent neuroprotective and anti-inflammatory effects demonstrated by ATH-1105 preclinically provide a compelling rationale for therapeutic interventions that leverage the positive modulation of the HGF pathway as a treatment for ALS.

5.
Brain Behav ; 7(7): e00736, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28729941

RESUMEN

INTRODUCTION: With its preservation of cytoarchitecture and synaptic circuitry, the hippocampal slice preparation has been a critical tool for studying the electrophysiological effects of pharmacological and genetic manipulations. To analyze the maximum number of slices or readouts per dissection, long incubation times postslice preparation are commonly used. We were interested in how slice integrity is affected by incubation postslice preparation. METHODS: Hippocampal slices were prepared by three different methods: a chopper, a vibratome, and a rotary slicer. To test slice integrity, we compared glycogen levels and immunohistochemistry of selected proteins in rat hippocampal slices immediately after dissection and following 2 and 4 hr of incubation. RESULTS: We found that immunoreactivity of the dendritic marker microtubule-associated protein 2 (Map2) drastically decreased during this incubation period, whereas immunoreactivity of the glutamate transporter VGlut1 did not significantly change with incubation time. Astrocytic and microglial cell numbers also did not significantly change with incubation time whereas glycogen levels markedly increased during incubation. CONCLUSION: Immunoreactivity of the dendritic marker Map2 quickly decreased after dissection with all the slicing methods. This work highlights a need for caution when using long incubation periods following slice preparation.


Asunto(s)
Glucógeno/metabolismo , Hipocampo/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Animales , Dendritas/metabolismo , Inmunohistoquímica , Masculino , Neuroglía/citología , Neuroglía/metabolismo , Ratas , Ratas Sprague-Dawley
6.
Neuroscience ; 329: 294-305, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27208617

RESUMEN

Age-associated changes in cognition are mirrored by impairments in cellular models of memory and learning, such as long-term potentiation (LTP) and long-term depression (LTD). In young rodents, environmental enrichment (EE) can enhance memory, alter LTP and LTD, as well as reverse cognitive deficits induced by aging. Whether short-term EE can benefit cognition and synaptic plasticity in aged rodents is unclear. Here, we tested if short-term EE could overcome age-associated impairments in induction of LTP and LTD. LTP and LTD could not be induced in the CA1 region of hippocampal slices in control, aged rats using standard stimuli that are highly effective in young rats. However, exposure of aged littermates to EE for three weeks enabled successful induction of LTP and LTD. EE-facilitated LTP was dependent upon N-methyl-d-aspartate receptors (NMDARs). These alterations in synaptic plasticity occurred with elevated levels of phosphorylated cAMP response element-binding protein and vascular endothelial growth factor, but in the absence of changes in several other synaptic and cellular markers. Importantly, our study suggests that even a relatively short period of EE is sufficient to alter synaptic plasticity and molecular markers linked to cognitive function in aged animals.


Asunto(s)
Envejecimiento/fisiología , Envejecimiento/psicología , Región CA1 Hipocampal/fisiología , Ambiente , Potenciación a Largo Plazo/fisiología , Depresión Sináptica a Largo Plazo/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Vivienda para Animales , Masculino , Fosforilación , Distribución Aleatoria , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pérdida de Peso
7.
Cell Metab ; 24(6): 795-806, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-28068222

RESUMEN

NAD+ availability decreases with age and in certain disease conditions. Nicotinamide mononucleotide (NMN), a key NAD+ intermediate, has been shown to enhance NAD+ biosynthesis and ameliorate various pathologies in mouse disease models. In this study, we conducted a 12-month-long NMN administration to regular chow-fed wild-type C57BL/6N mice during their normal aging. Orally administered NMN was quickly utilized to synthesize NAD+ in tissues. Remarkably, NMN effectively mitigates age-associated physiological decline in mice. Without any obvious toxicity or deleterious effects, NMN suppressed age-associated body weight gain, enhanced energy metabolism, promoted physical activity, improved insulin sensitivity and plasma lipid profile, and ameliorated eye function and other pathophysiologies. Consistent with these phenotypes, NMN prevented age-associated gene expression changes in key metabolic organs and enhanced mitochondrial oxidative metabolism and mitonuclear protein imbalance in skeletal muscle. These effects of NMN highlight the preventive and therapeutic potential of NAD+ intermediates as effective anti-aging interventions in humans.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Mononucleótido de Nicotinamida/administración & dosificación , Mononucleótido de Nicotinamida/farmacología , Administración Oral , Envejecimiento/genética , Animales , Densidad Ósea/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Oscuridad , Ingestión de Líquidos/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , Insulina/farmacología , Lípidos/sangre , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Masculino , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , NAD/metabolismo , Mononucleótido de Nicotinamida/sangre , Condicionamiento Físico Animal , Factores de Tiempo , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA