Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Soc Nephrol ; 29(5): 1449-1461, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29602832

RESUMEN

Background With No Lysine kinase (WNK) signaling regulates mammalian renal epithelial ion transport to maintain electrolyte and BP homeostasis. Our previous studies showed a conserved role for WNK in the regulation of transepithelial ion transport in the Drosophila Malpighian tubule.Methods Using in vitro assays and transgenic Drosophila lines, we examined two potential WNK regulators, chloride ion and the scaffold protein mouse protein 25 (Mo25), in the stimulation of transepithelial ion flux.ResultsIn vitro, autophosphorylation of purified Drosophila WNK decreased as chloride concentration increased. In conditions in which tubule intracellular chloride concentration decreased from 30 to 15 mM as measured using a transgenic sensor, Drosophila WNK activity acutely increased. Drosophila WNK activity in tubules also increased or decreased when bath potassium concentration decreased or increased, respectively. However, a mutation that reduces chloride sensitivity of Drosophila WNK failed to alter transepithelial ion transport in 30 mM chloride. We, therefore, examined a role for Mo25. In in vitro kinase assays, Drosophila Mo25 enhanced the activity of the Drosophila WNK downstream kinase Fray, the fly homolog of mammalian Ste20-related proline/alanine-rich kinase (SPAK), and oxidative stress-responsive 1 protein (OSR1). Knockdown of Drosophila Mo25 in the Malpighian tubule decreased transepithelial ion flux under stimulated but not basal conditions. Finally, whereas overexpression of wild-type Drosophila WNK, with or without Drosophila Mo25, did not affect transepithelial ion transport, Drosophila Mo25 overexpressed with chloride-insensitive Drosophila WNK increased ion flux.Conclusions Cooperative interactions between chloride and Mo25 regulate WNK signaling in a transporting renal epithelium.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Cloruros/metabolismo , Proteínas de Drosophila/metabolismo , Túbulos de Malpighi/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Unión al Calcio/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Epitelio/fisiología , Femenino , Técnicas de Silenciamiento del Gen , Transporte Iónico/genética , Fosforilación , Transducción de Señal
2.
Development ; 140(19): 3939-49, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24046315

RESUMEN

Adipose tissue is formed at stereotypic times and locations in a diverse array of organisms. Once formed, the tissue is dynamic, responding to homeostatic and external cues and capable of a 15-fold expansion. The formation and maintenance of adipose tissue is essential to many biological processes and when perturbed leads to significant diseases. Despite this basic and clinical significance, understanding of the developmental biology of adipose tissue has languished. In this Review, we highlight recent efforts to unveil adipose developmental cues, adipose stem cell biology and the regulators of adipose tissue homeostasis and dynamism.


Asunto(s)
Tejido Adiposo/citología , Adipocitos/citología , Animales , Diferenciación Celular/fisiología , Humanos , Nicho de Células Madre/fisiología , Células Madre/citología
3.
J Biol Chem ; 289(52): 36059-69, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25395623

RESUMEN

Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy.


Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSC70/metabolismo , Nucleotidiltransferasas/fisiología , Respuesta de Proteína Desplegada , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Proteínas de Drosophila/química , Drosophila melanogaster/enzimología , Estrés del Retículo Endoplásmico , Proteínas del Choque Térmico HSC70/química , Homeostasis , Datos de Secuencia Molecular , Nucleotidiltransferasas/química , Procesamiento Proteico-Postraduccional , Transcripción Genética , Regulación hacia Arriba
4.
Sci Rep ; 9(1): 2475, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792494

RESUMEN

The Drosophila Ncc69 gene encodes a Na+-K+-2Cl--cotransporter (NKCC) that is critical for regulating intra- and extracellular ionic conditions in different tissues. Here, we show that the Ncc69 transporter is necessary for fly vision and that its expression is required non-autonomously in glia to maintain visual synaptic transmission. Flies mutant for Ncc69 exhibit normal photoreceptor depolarization in response to a light pulse but lack the ON and OFF-transients characteristic of postsynaptic responses of lamina neurons, indicating a failure in synaptic transmission. We also find that synaptic transmission requires the Ncc69 regulatory kinases WNK and Fray in glia. The ERG phenotype is associated with a defect in the recycling of the histamine neurotransmitter. Ncc69 mutants exhibit higher levels of the transport metabolite carcinine in lamina cartridges, with its accumulation most intense in the extracellular space. Our work reveals a novel role of glial NKCC transporters in synaptic transmission, possibly through regulating extracellular ionic conditions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/citología , Neuroglía/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Simportadores de Cloruro de Sodio-Potasio/metabolismo , Animales , Carnosina/análogos & derivados , Carnosina/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Histamina/metabolismo , Mutación , Fenotipo , Simportadores de Cloruro de Sodio-Potasio/genética , Transmisión Sináptica
5.
Elife ; 62017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29227247

RESUMEN

Cdk5 is a post-mitotic kinase with complex roles in maintaining neuronal health. The various mechanisms by which Cdk5 inhibits and promotes neurodegeneration are still poorly understood. Here, we show that in Drosophila melanogaster Cdk5 regulates basal autophagy, a key mechanism suppressing neurodegeneration. In a targeted screen, Cdk5 genetically interacted with Acinus (Acn), a primarily nuclear protein, which promotes starvation-independent, basal autophagy. Loss of Cdk5, or its required cofactor p35, reduces S437-Acn phosphorylation, whereas Cdk5 gain-of-function increases pS437-Acn levels. The phospho-mimetic S437D mutation stabilizes Acn and promotes basal autophagy. In p35 mutants, basal autophagy and lifespan are reduced, but restored to near wild-type levels in the presence of stabilized AcnS437D. Expression of aggregation-prone polyQ-containing proteins or the Amyloid-ß42 peptide, but not alpha-Synuclein, enhances Cdk5-dependent phosphorylation of S437-Acn. Our data indicate that Cdk5 is required to maintain the protective role of basal autophagy in the initial responses to a subset of neurodegenerative challenges.


Asunto(s)
Autofagia , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Animales , Proteínas de Drosophila/genética , Mutagénesis Sitio-Dirigida , Fosforilación , Mapeo de Interacción de Proteínas , Factores de Transcripción/genética
6.
Elife ; 4: e10972, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26653853

RESUMEN

Synaptic transmission from Drosophila photoreceptors to lamina neurons requires recycling of histamine neurotransmitter. Synaptic histamine is cleared by uptake into glia and conversion into carcinine, which functions as transport metabolite. How carcinine is transported from glia to photoreceptor neurons remains unclear. In a targeted RNAi screen for genes involved in this pathway, we identified carT, which encodes a member of the SLC22A transporter family. CarT expression in photoreceptors is necessary and sufficient for fly vision and behavior. Carcinine accumulates in the lamina of carT flies. Wild-type levels are restored by photoreceptor-specific expression of CarT, and endogenous tagging suggests CarT localizes to synaptic endings. Heterologous expression of CarT in S2 cells is sufficient for carcinine uptake, demonstrating the ability of CarT to utilize carcinine as a transport substrate. Together, our results demonstrate that CarT transports the histamine metabolite carcinine into photoreceptor neurons, thus contributing an essential step to the histamine-carcinine cycle.


Asunto(s)
Carnosina/análogos & derivados , Drosophila/fisiología , Histamina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Células Fotorreceptoras/metabolismo , Animales , Carnosina/metabolismo , Expresión Génica , Técnicas de Inactivación de Genes , Pruebas Genéticas , Proteínas del Tejido Nervioso/genética , Neuroglía/metabolismo , Interferencia de ARN
7.
J Cell Biol ; 207(2): 253-68, 2014 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-25332163

RESUMEN

How cellular stresses up-regulate autophagy is not fully understood. One potential regulator is the Drosophila melanogaster protein Acinus (Acn), which is necessary for autophagy induction and triggers excess autophagy when overexpressed. We show that cell type-specific regulation of Acn depends on proteolysis by the caspase Dcp-1. Basal Dcp-1 activity in developing photoreceptors is sufficient for this cleavage without a need for apoptosis to elevate caspase activity. On the other hand, Acn was stabilized by loss of Dcp-1 function or by the presence of a mutation in Acn that eliminates its conserved caspase cleavage site. Acn stability also was regulated by AKT1-mediated phosphorylation. Flies that expressed stabilized forms of Acn, either the phosphomimetic Acn(S641,731D) or the caspase-resistant Acn(D527A), exhibited enhanced basal autophagy. Physiologically, these flies showed improvements in processes known to be autophagy dependent, including increased starvation resistance, reduced Huntingtin-induced neurodegeneration, and prolonged life span. These data indicate that AKT1 and caspase-dependent regulation of Acn stability adjusts basal autophagy levels.


Asunto(s)
Autofagia , Caspasas/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/citología , Proteínas Proto-Oncogénicas c-akt/fisiología , Factores de Transcripción/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis , Sitios de Unión , Caspasas/genética , Caspasas/metabolismo , Secuencia Conservada , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Longevidad/genética , Datos de Secuencia Molecular , Mutación , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Cell Metab ; 17(1): 101-12, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23312286

RESUMEN

A common thread among conserved life span regulators lies within intertwined roles in metabolism and energy homeostasis. We show that heterozygous mutations of AMP biosynthetic enzymes extend Drosophila life span. The life span benefit of these mutations depends upon increased AMP:ATP and ADP:ATP ratios and adenosine monophosphate-activated protein kinase (AMPK). Transgenic expression of AMPK in adult fat body or adult muscle, key metabolic tissues, extended life span, while AMPK RNAi reduced life span. Supplementing adenine, a substrate for AMP biosynthesis, to the diet of long-lived AMP biosynthesis mutants reversed life span extension. Remarkably, this simple change in diet also blocked the prolongevity effects of dietary restriction. These data establish AMP biosynthesis, adenosine nucleotide ratios, and AMPK as determinants of adult life span; provide a mechanistic link between cellular anabolism and energy sensing pathways; and indicate that dietary adenine manipulations might alter metabolism to influence animal life span.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/biosíntesis , Longevidad , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/genética , Adenosina Trifosfato/metabolismo , Adenilosuccinato Sintasa/genética , Adenilosuccinato Sintasa/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Restricción Calórica , Drosophila/enzimología , Drosophila/metabolismo , Cuerpo Adiposo/metabolismo , Heterocigoto , Mutación , Interferencia de ARN
9.
Cell Metab ; 15(4): 492-504, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22482731

RESUMEN

Adipose tissues provide circulating nutrients and hormones. We present in vivo mouse studies highlighting roles for Wnt signals in both aspects of metabolism. ß-catenin activation in PPARγ-expressing fat progenitors (PBCA) decreased fat mass and induced fibrotic replacement of subcutaneous fat specifically. In spite of lipodystrophy, PBCA mice did not develop the expected diabetes and hepatosteatosis, but rather exhibited improved glucose metabolism and normal insulin sensitivity. Glucose uptake was increased in muscle independently of insulin, associated with cell-surface translocation of glucose transporters and AMPK activation. Ex vivo assays showed these effects were likely secondary to blood-borne signals since PBCA sera or conditioned media from PBCA fat progenitors enhanced glucose uptake and activated AMPK in muscle cultures. Thus, adipose progenitor Wnt activation dissociates lipodystrophy from dysfunctional metabolism and highlights a fat-muscle endocrine axis, which may represent a potential therapy to lower blood glucose and improve metabolism.


Asunto(s)
Adipocitos/metabolismo , Adipocitos/patología , Glucosa/metabolismo , Músculos/metabolismo , Células Madre/metabolismo , Células Madre/patología , Vía de Señalización Wnt , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/efectos de los fármacos , Adiposidad/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Compartimento Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Insulina/metabolismo , Lipodistrofia/metabolismo , Lipodistrofia/patología , Ratones , Ratones Mutantes , Músculos/efectos de los fármacos , Mutación/genética , PPAR gamma/metabolismo , Células Madre/efectos de los fármacos , Células del Estroma/efectos de los fármacos , Células del Estroma/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
10.
Diabetes ; 58(11): 2565-73, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19690063

RESUMEN

OBJECTIVE: We evaluate a potential role of activating transcription factor 4 (Atf4) in invertebrate and mammalian metabolism. RESEARCH DESIGN AND METHODS: With two parallel approaches-a fat body-specific green fluorescent protein enhancer trap screen in D. melanogaster and expression profiling of developing murine fat tissues-we identified Atf4 as expressed in invertebrate and vertebrate metabolic tissues. We assessed the functional relevance of the evolutionarily conserved expression by analyzing Atf4 mutant flies and Atf4 mutant mice for possible metabolic phenotypes. RESULTS: Flies with insertions at the Atf4 locus have reduced fat content, increased starvation sensitivity, and lower levels of circulating carbohydrate. Atf4 null mice are also lean, and they resist age-related and diet-induced obesity. Atf4 null mice have increased energy expenditure potentially accounting for the lean phenotype. Atf4 null mice are hypoglycemic, even before substantial changes in fat content, indicating that Atf4 regulates mammalian carbohydrate metabolism. In addition, the Atf4 mutation blunts diet-induced diabetes as well as hyperlipidemia and hepatosteatosis. Several aspects of the Atf4 mutant phenotype resemble mice with mutations in components of the target of rapamycin (TOR) pathway. Consistent with the phenotypic similarities, Atf4 null mice have reduced expression of genes that regulate intracellular amino acid concentrations and lower intracellular concentration of amino acids, a key TOR input. Further, Atf4 mutants have reduced S6K activity in liver and adipose tissues. CONCLUSIONS: Atf4 regulates age-related and diet-induced obesity as well as glucose homeostasis in mammals and has conserved metabolic functions in flies.


Asunto(s)
Factor de Transcripción Activador 4/genética , Metabolismo Energético , Glucosa/metabolismo , Obesidad/fisiopatología , Factor de Transcripción Activador 4/fisiología , Aminoácidos/sangre , Animales , Secuencia Conservada , AMP Cíclico/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/prevención & control , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Ácidos Grasos/análisis , Perfilación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Homeostasis , Hipoglucemia/genética , Larva/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes/genética , Ratones Transgénicos , Mutación , Obesidad/genética , Obesidad/prevención & control , Fenotipo
11.
PLoS One ; 3(5): e2152, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18478054

RESUMEN

The pursuit of eternal youth has existed for centuries and recent data indicate that fat-storing tissues control lifespan. In a D. melanogaster fat body insertional mutagenic enhancer trap screen designed to isolate genes that control longevity, we identified a regulator of G protein signaling (RGS) domain containing sorting nexin, termed snazarus (sorting nexin lazarus, snz). Flies with insertions into the 5' UTR of snz live up to twice as long as controls. Transgenic expression of UAS-Snz from the snz Gal4 enhancer trap insertion, active in fat metabolic tissues, rescued lifespan extension. Further, the lifespan extension of snz mutants was independent of endosymbiont, e.g., Wolbachia, effects. Notably, old snz mutant flies remain active and fertile indicating that snz mutants have prolonged youthfulness, a goal of aging research. Since mammals have snz-related genes, it is possible that the functions of the snz family may be conserved to humans.


Asunto(s)
Proteínas Portadoras/fisiología , Drosophila/fisiología , Longevidad , Oligopéptidos/química , Proteínas de Transporte Vesicular/fisiología , Regiones no Traducidas 5' , Animales , Animales Modificados Genéticamente , Proteínas Portadoras/química , Drosophila/genética , Cuerpo Adiposo/fisiología , Larva/fisiología , Mutación , Nexinas de Clasificación , Proteínas de Transporte Vesicular/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA