Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(5): 1123-1135, 2014 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171412

RESUMEN

Eukaryotic translation initiation requires the recruitment of the large, multiprotein eIF3 complex to the 40S ribosomal subunit. We present X-ray structures of all major components of the minimal, six-subunit Saccharomyces cerevisiae eIF3 core. These structures, together with electron microscopy reconstructions, cross-linking coupled to mass spectrometry, and integrative structure modeling, allowed us to position and orient all eIF3 components on the 40S⋅eIF1 complex, revealing an extended, modular arrangement of eIF3 subunits. Yeast eIF3 engages 40S in a clamp-like manner, fully encircling 40S to position key initiation factors on opposite ends of the mRNA channel, providing a platform for the recruitment, assembly, and regulation of the translation initiation machinery. The structures of eIF3 components reported here also have implications for understanding the architecture of the mammalian 43S preinitiation complex and the complex of eIF3, 40S, and the hepatitis C internal ribosomal entry site RNA.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 3 de Iniciación Eucariótica/química , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Dimerización , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Hepacivirus/química , Humanos , Mamíferos/metabolismo , Microscopía Electrónica , Modelos Moleculares , Datos de Secuencia Molecular , Ribonucleoproteínas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
2.
Cell ; 154(6): 1220-31, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034246

RESUMEN

The ATP-dependent chromatin-remodeling complex SWR1 exchanges a variant histone H2A.Z/H2B dimer for a canonical H2A/H2B dimer at nucleosomes flanking histone-depleted regions, such as promoters. This localization of H2A.Z is conserved throughout eukaryotes. SWR1 is a 1 megadalton complex containing 14 different polypeptides, including the AAA+ ATPases Rvb1 and Rvb2. Using electron microscopy, we obtained the three-dimensional structure of SWR1 and mapped its major functional components. Our data show that SWR1 contains a single heterohexameric Rvb1/Rvb2 ring that, together with the catalytic subunit Swr1, brackets two independently assembled multisubunit modules. We also show that SWR1 undergoes a large conformational change upon engaging a limited region of the nucleosome core particle. Our work suggests an important structural role for the Rvbs and a distinct substrate-handling mode by SWR1, thereby providing a structural framework for understanding the complex dimer-exchange reaction.


Asunto(s)
Adenosina Trifosfatasas/química , Ensamble y Desensamble de Cromatina , ADN Helicasas/química , Complejos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Dimerización , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Nucleosomas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Transcripción/metabolismo
3.
Mol Cell ; 75(5): 996-1006.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31377116

RESUMEN

Cotranslational processing of newly synthesized proteins is fundamental for correct protein maturation. Protein biogenesis factors are thought to bind nascent polypeptides not before they exit the ribosomal tunnel. Here, we identify a nascent chain recognition mechanism deep inside the ribosomal tunnel by an essential eukaryotic cytosolic chaperone. The nascent polypeptide-associated complex (NAC) inserts the N-terminal tail of its ß subunit (N-ßNAC) into the ribosomal tunnel to sense substrates directly upon synthesis close to the peptidyl-transferase center. N-ßNAC escorts the growing polypeptide to the cytosol and relocates to an alternate binding site on the ribosomal surface. Using C. elegans as an in vivo model, we demonstrate that the tunnel-probing activity of NAC is essential for organismal viability and critical to regulate endoplasmic reticulum (ER) protein transport by controlling ribosome-Sec61 translocon interactions. Thus, eukaryotic protein maturation relies on the early sampling of nascent chains inside the ribosomal tunnel.


Asunto(s)
Proteínas de Caenorhabditis elegans/biosíntesis , Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Canales de Translocación SEC/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/genética , Humanos , Ribosomas/genética , Canales de Translocación SEC/genética , Saccharomyces cerevisiae
4.
Nucleic Acids Res ; 52(1): 101-113, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-37994785

RESUMEN

Post-translational modifications (PTMs) of histones have fundamental effects on chromatin structure and function. While the impact of PTMs on the function of core histones are increasingly well understood, this is much less the case for modifications of linker histone H1, which is at least in part due to a lack of proper tools. In this work, we establish the assembly of intact chromatosomes containing site-specifically ubiquitylated and acetylated linker histone H1.2 variants obtained by a combination of chemical biology approaches. We then use these complexes in a tailored affinity enrichment mass spectrometry workflow to identify and comprehensively characterize chromatosome-specific cellular interactomes and the impact of site-specific linker histone modifications on a proteome-wide scale. We validate and benchmark our approach by western-blotting and by confirming the involvement of chromatin-bound H1.2 in the recruitment of proteins involved in DNA double-strand break repair using an in vitro ligation assay. We relate our data to previous work and in particular compare it to data on modification-specific interaction partners of free H1. Taken together, our data supports the role of chromatin-bound H1 as a regulatory protein with distinct functions beyond DNA compaction and constitutes an important resource for future investigations of histone epigenetic modifications.


Asunto(s)
Cromatina , Histonas , Espectrometría de Masas , Humanos , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN/química , Reparación del ADN , Histonas/metabolismo , Nucleosomas , Procesamiento Proteico-Postraduccional , Espectrometría de Masas/métodos
5.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36278895

RESUMEN

Oocyte maturation and early embryo development occur in vertebrates in the near absence of transcription. Thus, sexual reproduction of vertebrates critically depends on the timely translation of mRNAs already stockpiled in the oocyte. Yet how translational activation of specific mRNAs is temporally coordinated is still incompletely understood. Here, we elucidate the function of Zar1l, a yet uncharacterized member of the Zar RNA-binding protein family, in Xenopus oocytes. Employing TRIM-Away, we demonstrate that loss of Zar1l accelerates hormone-induced meiotic resumption of Xenopus oocytes due to premature accumulation of the M-phase-promoting kinase cMos. We show that Zar1l is a constituent of a large ribonucleoparticle containing the translation repressor 4E-T and the central polyadenylation regulator CPEB1, and that it binds directly to the cMos mRNA. Partial, hormone-induced degradation of Zar1l liberates 4E-T from CPEB1, which weakens translational repression of mRNAs encoding cMos and likely additional M-phase-promoting factors. Thus, our study provides fundamental insights into the mechanisms that ensure temporally regulated translation of key cell cycle regulators during oocyte maturation, which is essential for sexual reproductivity.


Asunto(s)
Meiosis , Oocitos , Animales , Xenopus laevis/genética , Xenopus laevis/metabolismo , Oocitos/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hormonas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Biosíntesis de Proteínas
6.
Chembiochem ; 25(5): e202300797, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38236015

RESUMEN

ADP-ribosylation is a post-translational modification catalyzed by the enzyme family of polyadenosine diphosphate (ADP)-ribose) polymerases (PARPs). This enzymatic process involves the transfer of single or multiple ADP-ribose molecules onto proteins, utilizing nicotinamide adenine dinucleotide (NAD+ ) as a substrate. It, thus, plays a pivotal role in regulating various biological processes. Unveiling PARP-selective protein targets is crucial for a better understanding of their biological functions. Nonetheless, this task proves challenging due to overlapping targets shared among PARP family members. Therefore, we applied the "bump-and-hole" strategy to modify the nicotinamide binding site of PARP1 by introducing a hydrophobic pocket ("hole"). This PARP1-mutant binds an orthogonal NAD+ (Et-DTB-NAD+ ) containing an ethyl group ("bump") at the nicotinamide moiety. Furthermore, we added a desthiobiotin (DTB) tag directly to the adenosine moiety, enabling affinity enrichment of ADP-ribosylated proteins. Employing this approach, we successfully identified protein targets modified by PARP1 in cell lysate. This strategy expands the arsenal of chemically modified NAD+ analogs available for studying ADP-ribosylation, providing a powerful tool to study these critical post-translational modifications.


Asunto(s)
Biotina/análogos & derivados , NAD , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Sitios de Unión , Niacinamida/farmacología
7.
Chembiochem ; 25(10): e202400184, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573110

RESUMEN

Genetic aberrations of the maternal UBE3A allele, which encodes the E3 ubiquitin ligase E6AP, are the cause of Angelman syndrome (AS), an imprinting disorder. In most cases, the maternal UBE3A allele is not expressed. Yet, approximately 10 percent of AS individuals harbor distinct point mutations in the maternal allele resulting in the expression of full-length E6AP variants that frequently display compromised ligase activity. In a high-throughput screen, we identified cyanocobalamin, a vitamin B12-derivative, and several alloxazine derivatives as activators of the AS-linked E6AP-F583S variant. Furthermore, we show by cross-linking coupled to mass spectrometry that cobalamins affect the structural dynamics of E6AP-F583S and apply limited proteolysis coupled to mass spectrometry to obtain information about the regions of E6AP that are involved in, or are affected by binding cobalamins and alloxazine derivatives. Our data suggest that dietary supplementation with vitamin B12 can be beneficial for AS individuals.


Asunto(s)
Síndrome de Angelman , Ubiquitina-Proteína Ligasas , Vitamina B 12 , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/genética , Síndrome de Angelman/tratamiento farmacológico , Síndrome de Angelman/metabolismo , Humanos , Regulación Alostérica/efectos de los fármacos , Vitamina B 12/metabolismo , Vitamina B 12/química , Vitamina B 12/farmacología
9.
J Pept Sci ; 29(3): e3458, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36264037

RESUMEN

Intracellular dinucleoside polyphosphates (Npn Ns) have been known for decades but the functional role remains enigmatic. Diadenosine triphosphate (Ap3 A) is one of the most prominent examples, and its intercellular concentration was shown to increase upon cellular stress. By employment of previously reported Ap3 A-based photoaffinity-labeling probes (PALPs) in chemical proteomics, we investigated the Ap3 A interactome in the human lung carcinoma cell line H1299. The cell line is deficient of the fragile histidine triade (Fhit) protein, a hydrolase of Ap3 A and tumor suppressor. Overall, the number of identified potential interaction partners was significantly lower than in the previously investigated HEK293T cell line. Gene ontology term analysis revealed that the identified proteins participate in similar pathways as for HEK293T, but the percentage of proteins involved in RNA-related processes is higher for H1299. The obtained results highlight similarities and differences of the Ap3 A interaction network in different cell lines and give further indications regarding the importance of the presence of Fhit.


Asunto(s)
Fosfatos de Dinucleósidos , Neoplasias , Humanos , Fosfatos de Dinucleósidos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Guanosina Pentafosfato , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Células HEK293 , Proteómica
10.
J Am Chem Soc ; 144(19): 8613-8623, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35522782

RESUMEN

The tumor suppressor protein fragile histidine triad (Fhit) is known to be associated with genomic instability and apoptosis. The tumor-suppressive function of Fhit depends on the interaction with the alarmone diadenosine triphosphate (Ap3A), a noncanonical nucleotide whose concentration increases upon cellular stress. How the Fhit-Ap3A complex exerts its signaling function is unknown. Here, guided by a chemical proteomics approach employing a synthetic stable Fhit-Ap3A complex, we found that the Fhit-Ap3A complex, but not Fhit or Ap3A alone, impedes translation. Our findings provide a mechanistic model in which Fhit translocates from the nucleolus into the cytosol upon stress to form an Fhit-Ap3A complex. The Fhit-Ap3A complex impedes translation both in vitro and in vivo, resulting in reduced cell viability. Overall, our findings provide a mechanistic model by which the tumor suppressor Fhit collaborates with the alarmone Ap3A to regulate cellular proliferation.


Asunto(s)
Ácido Anhídrido Hidrolasas , Proteínas de Neoplasias , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Guanosina Pentafosfato , Proteínas de Neoplasias/metabolismo , Proteómica , Transducción de Señal
11.
Anal Chem ; 94(51): 17751-17756, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36510358

RESUMEN

Cross-linking mass spectrometry (XL-MS) has become an indispensable tool for the emerging field of systems structural biology over the recent years. However, the confidence in individual protein-protein interactions (PPIs) depends on the correct assessment of individual inter-protein cross-links. In this article, we describe a mono- and intralink filter (mi-filter) that is applicable to any kind of cross-linking data and workflow. It stipulates that only proteins for which at least one monolink or intra-protein cross-link has been identified within a given data set are considered for an inter-protein cross-link and therefore participate in a PPI. We show that this simple and intuitive filter has a dramatic effect on different types of cross-linking data ranging from individual protein complexes over medium-complexity affinity enrichments to proteome-wide cell lysates and significantly reduces the number of false-positive identifications for inter-protein links in all these types of XL-MS data.


Asunto(s)
Proteoma , Espectrometría de Masas , Proteoma/química , Reactivos de Enlaces Cruzados/química
13.
Angew Chem Int Ed Engl ; 61(18): e202200977, 2022 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-35188710

RESUMEN

Post-translational modification (PTM) with ADP-ribose and poly(ADP-ribose) using nicotinamide adenine dinucleotide (NAD+ ) as substrate is involved in the regulation of numerous cellular pathways in eukaryotes, notably the response to DNA damage caused by cellular stress. Nevertheless, due to intrinsic properties of NAD+ e.g., high polarity and associated poor cell passage, these PTMs are difficult to characterize in cells. Here, two new NAD+ derivatives are presented, which carry either a fluorophore or an affinity tag and, in combination with developed methods for mild cell delivery, allow studies in living human cells. We show that this approach allows not only the imaging of ADP-ribosylation in living cells but also the proteome-wide analysis of cellular adaptation by protein ADP-ribosylation as a consequence of environmental changes such as H2 O2 -induced oxidative stress or the effect of the approved anti-cancer drug olaparib. Our results therefore pave the way for further functional and clinical studies of the ADP-ribosylated proteome in living cells in health and disease.


Asunto(s)
NAD , Proteoma , ADP-Ribosilación , Adenosina Difosfato Ribosa , Humanos , NAD/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo
14.
J Proteome Res ; 20(9): 4443-4451, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34351766

RESUMEN

Linker histone H1 plays a key role in chromatin organization and maintenance, yet our knowledge of the regulation of H1 functions by post-translational modifications is rather limited. In this study, we report on the generation of site-specifically mono- and di-acetylated linker histone H1.2 by genetic code expansion. We used these modified histones to identify and characterize the acetylation-dependent cellular interactome of H1.2 by affinity purification mass spectrometry and show that site-specific acetylation results in overlapping but distinct groups of interacting partners. Among these, we find multiple translational initiation factors and transcriptional regulators such as the NAD+-dependent deacetylase SIRT1, which we demonstrate to act on acetylated H1.2. Taken together, our data suggest that site-specific acetylation of H1.2 plays a role in modulating protein-protein interactions.


Asunto(s)
Histonas , Procesamiento Proteico-Postraduccional , Acetilación , Cromatina , Histonas/genética , Histonas/metabolismo , Espectrometría de Masas
15.
J Biol Chem ; 295(44): 15070-15082, 2020 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-32855237

RESUMEN

The E6 protein of both mucosal high-risk human papillomaviruses (HPVs) such as HPV-16, which have been causally associated with malignant tumors, and low-risk HPVs such as HPV-11, which cause the development of benign tumors, interacts with the cellular E3 ubiquitin ligase E6-associated protein (E6AP). This indicates that both HPV types employ E6AP to organize the cellular proteome to viral needs. However, whereas several substrate proteins of the high-risk E6-E6AP complex are known, e.g. the tumor suppressor p53, potential substrates of the low-risk E6-E6AP complex remain largely elusive. Here, we report on an affinity-based enrichment approach that enables the targeted identification of potential substrate proteins of the different E6-E6AP complexes by a combination of E3-selective ubiquitination in whole-cell extracts and high-resolution MS. The basis for the selectivity of this approach is the use of a ubiquitin variant that is efficiently used by the E6-E6AP complexes for ubiquitination but not by E6AP alone. By this approach, we identified ∼190 potential substrate proteins for low-risk HPV-11 E6 and high-risk HPV-16 E6. Moreover, subsequent validation experiments in vitro and within cells with selected substrate proteins demonstrate the potential of our approach. In conclusion, our data represent a reliable repository for potential substrates of the HPV-16 and HPV-11 E6 proteins in complex with E6AP.


Asunto(s)
Papillomavirus Humano 11/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Biotina/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Proteolisis , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitinación
16.
Anal Chem ; 93(39): 13226-13234, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34542282

RESUMEN

Small heat-shock proteins (sHSPs) are important members of the cellular stress response in all species. Their best-described function is the binding of early unfolding states and the resulting prevention of protein aggregation. Many sHSPs exist as a polydisperse composition of oligomers, which undergoes changes in subunit composition, folding status, and relative distribution upon heat activation. To date, only an incomplete picture of the mechanism of sHSP activation exists; in particular, the molecular basis of how sHSPs bind client proteins and mediate client specificity is not fully understood. In this study, we have applied cross-linking mass spectrometry (XL-MS) to obtain detailed structural information on sHSP activation and client binding for yeast Hsp26. Our cross-linking data reveals the middle domain of Hsp26 as a client-independent interface in multiple Hsp26::client complexes and indicates that client specificity is likely mediated via additional binding sites within its α-crystallin domain and C-terminal extension. Our quantitative XL-MS data underpins the middle domain as the main driver of heat-induced activation and client binding but shows that global rearrangements spanning all domains of Hsp26 take place simultaneously. We also investigated a Hsp26::client complex in the presence of Ssa1 (Hsp70) and Ydj1(Hsp40) at the initial stage of refolding and observe that the interaction between refolding chaperones is altered by the presence of a client protein, pointing to a mechanism where the interaction of Ydj1 with the HSP::client complex initiates the assembly of the active refolding machinery.


Asunto(s)
Proteínas de Choque Térmico , Espectrometría de Masas , Proteínas de Choque Térmico/química , Humanos , Estructura Cuaternaria de Proteína
17.
Nature ; 524(7564): 247-51, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26245380

RESUMEN

Protein aggregates are the hallmark of stressed and ageing cells, and characterize several pathophysiological states. Healthy metazoan cells effectively eliminate intracellular protein aggregates, indicating that efficient disaggregation and/or degradation mechanisms exist. However, metazoans lack the key heat-shock protein disaggregase HSP100 of non-metazoan HSP70-dependent protein disaggregation systems, and the human HSP70 system alone, even with the crucial HSP110 nucleotide exchange factor, has poor disaggregation activity in vitro. This unresolved conundrum is central to protein quality control biology. Here we show that synergic cooperation between complexed J-protein co-chaperones of classes A and B unleashes highly efficient protein disaggregation activity in human and nematode HSP70 systems. Metazoan mixed-class J-protein complexes are transient, involve complementary charged regions conserved in the J-domains and carboxy-terminal domains of each J-protein class, and are flexible with respect to subunit composition. Complex formation allows J-proteins to initiate transient higher order chaperone structures involving HSP70 and interacting nucleotide exchange factors. A network of cooperative class A and B J-protein interactions therefore provides the metazoan HSP70 machinery with powerful, flexible, and finely regulatable disaggregase activity and a further level of regulation crucial for cellular protein quality control.


Asunto(s)
Caenorhabditis elegans/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Agregado de Proteínas , Animales , Proteínas del Choque Térmico HSP110/metabolismo , Proteínas HSP70 de Choque Térmico/química , Humanos , Modelos Moleculares , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/prevención & control , Unión Proteica , Estructura Terciaria de Proteína , Electricidad Estática
18.
Trends Biochem Sci ; 41(1): 20-32, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26654279

RESUMEN

In recent years, chemical crosslinking of protein complexes and the identification of crosslinked residues by mass spectrometry (XL-MS; sometimes abbreviated as CX-MS) has become an important technique bridging mass spectrometry (MS) and structural biology. By now, XL-MS is well established and supported by publicly available resources as a convenient and versatile part of the structural biologist's toolbox. The combination of XL-MS with cryo-electron microscopy (cryo-EM) and/or integrative modeling is particularly promising to study the topology and structure of large protein assemblies. Among the targets studied so far are proteasomes, ribosomes, polymerases, chromatin remodelers, and photosystem complexes. Here we provide an overview of recent advances in XL-MS, the current state of the field, and a cursory outlook on future challenges.


Asunto(s)
Reactivos de Enlaces Cruzados/química , Proteínas/química , Proteínas/metabolismo , Humanos , Espectrometría de Masas , Conformación Proteica
19.
Anal Chem ; 92(5): 4016-4022, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32011863

RESUMEN

Proteome-wide cross-linking studies have spurred great interest as they facilitate structural probing of protein interactions in living cells and organisms. However, current studies have a bias for high-abundant proteins. In this study we demonstrate both experimentally and by a kinetic model that this bias is also caused by the propensity of cross-links to preferentially form on high abundant proteins and not by the inability to detect cross-links due to limitations in current technology. We further show, by using both an in vitro mimic of a crowded cellular environment and eukaryotic cell lysates, that parameters optimized toward a pseudo first order kinetics model result in a significant increase in the detection of lower-abundant proteins on a proteome-wide scale. Our study therefore explains the cause of a major limitation in current proteome-wide cross-linking studies and demonstrates how to address a larger part of the proteome by cross-linking.


Asunto(s)
Proteoma/análisis , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Reactivos de Enlaces Cruzados/química , Péptidos/análisis , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(39): 10414-10419, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28893983

RESUMEN

Protein phosphorylation by cyclic AMP-dependent protein kinase (PKA) underlies key cellular processes, including sympathetic stimulation of heart cells, and potentiation of synaptic strength in neurons. Unrestrained PKA activity is pathological, and an enduring challenge is to understand how the activity of PKA catalytic subunits is directed in cells. We developed a light-activated cross-linking approach to monitor PKA subunit interactions with temporal precision in living cells. This enabled us to refute the recently proposed theory that PKA catalytic subunits remain tethered to regulatory subunits during cAMP elevation. Instead, we have identified other features of PKA signaling for reducing catalytic subunit diffusion and increasing recapture rate. Comprehensive quantitative immunoblotting of protein extracts from human embryonic kidney cells and rat organs reveals that regulatory subunits are always in large molar excess of catalytic subunits (average ∼17-fold). In the majority of organs tested, type II regulatory (RII) subunits were found to be the predominant PKA subunit. We also examined the architecture of PKA complexes containing RII subunits using cross-linking coupled to mass spectrometry. Quantitative comparison of cross-linking within a complex of RIIß and Cß, with or without the prototypical anchoring protein AKAP18α, revealed that the dimerization and docking domain of RIIß is between its second cAMP binding domains. This architecture is compatible with anchored RII subunits directing the myristylated N terminus of catalytic subunits toward the membrane for release and recapture within the plane of the membrane.


Asunto(s)
Dominio Catalítico/fisiología , Subunidad RIIbeta de la Proteína Quinasa Dependiente de AMP Cíclico/química , Miocitos Cardíacos/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Línea Celular , AMP Cíclico/química , Células HEK293 , Humanos , Masculino , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Miocardio/metabolismo , Fosforilación/fisiología , Unión Proteica , Estructura Secundaria de Proteína , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA