Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Nano Lett ; 24(5): 1703-1709, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38278134

RESUMEN

The development of methods to synthesize artificial protein complexes with precisely controlled configurations will enable diverse biological and medical applications. Using DNA to link proteins provides programmability that can be difficult to achieve with other methods. Here, we use DNA origami as an "assembler" to guide the linking of protein-DNA conjugates using a series of oligonucleotide hybridization and displacement operations. We constructed several isomeric protein nanostructures, including a dimer, two types of trimer structures, and three types of tetramer assemblies, on a DNA origami platform by using a C3-symmetric building block composed of a protein trimer modified with DNA handles. Our approach expands the scope for the precise assembly of protein-based nanostructures and will enable the formulation of functional protein complexes with stoichiometric and geometric control.


Asunto(s)
Nanoestructuras , Nanoestructuras/química , ADN/química , Oligonucleótidos , Polímeros , Conformación de Ácido Nucleico , Nanotecnología
2.
Small ; 20(9): e2307585, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37849034

RESUMEN

The combination of multiple orthogonal interactions enables hierarchical complexity in self-assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host-guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010 m-1 , directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower-affinity ß-cyclodextrin-adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high-affinity CB[7]-adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high-affinity CB[7]-guest recognition as an orthogonal axis to drive self-assembly in DNA nanotechnology.


Asunto(s)
Adamantano , Nanofibras , Nanoestructuras , Nanotecnología , ADN
3.
Biomacromolecules ; 25(7): 3865-3876, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38860980

RESUMEN

In biology, nanomachines like the ribosome use nucleic acid templates to synthesize polymers in a sequence-specific, programmable fashion. Researchers have long been interested in using the programmable properties of nucleic acids to enhance chemical reactions via colocalization of reagents using complementary nucleic acid handles. In this review, we describe progress in using nucleic acid templates, handles, or splints to enhance the covalent coupling of peptides to other peptides or oligonucleotides. We discuss work in several areas: creating ribosome-mimetic systems, synthesizing bioactive peptides on DNA or RNA templates, linking peptides into longer molecules and bioactive antibody mimics, and scaffolding peptides to build protein-mimetic architectures. We close by highlighting the challenges that must be overcome in nucleic acid-templated peptide chemistry in two areas: making full-length, functional proteins from synthetic peptides and creating novel protein-mimetic architectures not possible through macromolecular folding alone.


Asunto(s)
Péptidos , Ribosomas , Ribosomas/química , Ribosomas/metabolismo , Péptidos/química , Humanos , Ácidos Nucleicos/química , ADN/química , Materiales Biomiméticos/química
4.
J Am Chem Soc ; 145(48): 26075-26085, 2023 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-37987645

RESUMEN

The structural analysis of guest molecules in rationally designed and self-assembling DNA crystals has proven an elusive goal since its conception. Oligonucleotide frameworks provide an especially attractive route toward studying DNA-binding molecules by using three-dimensional lattices with defined sequence and structure. In this work, we site-specifically position a suite of minor groove binding molecules, and solve their structures via X-ray crystallography as a proof-of-principle toward scaffolding larger guest species. Two crystal motifs were used to precisely immobilize the molecules DAPI, Hoechst, and netropsin at defined positions in the lattice, allowing us to control occupancy within the crystal. We also solved the structure of a three-ring imidazole-pyrrole-pyrrole polyamide molecule, which sequence-specifically packs in an antiparallel dimeric arrangement within the minor groove. Finally, we engineered a crystal designed to position both netropsin and the polyamide at two distinct locations within the same lattice. Our work elucidates the design principles for the spatial arrangement of functional guests within lattices and opens new potential opportunities for the use of DNA crystals to display and structurally characterize small molecules, peptides, and ultimately proteins of unknown structure.


Asunto(s)
Netropsina , Nylons , Netropsina/química , ADN/química , Oligonucleótidos , Pirroles/química , Conformación de Ácido Nucleico
5.
J Am Chem Soc ; 145(50): 27336-27347, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055928

RESUMEN

Direct and efficient delivery of functional payloads such as chemotherapy drugs, siRNA, or small-molecule inhibitors into the cytoplasm, bypassing the endo/lysosomal trapping, is a challenging task for intracellular medicine. Here, we take advantage of the programmability of DNA nanotechnology to develop a DNA nanodevice called CytoDirect, which incorporates disulfide units and human epidermal growth factor receptor 2 (HER2) affibodies into a DNA origami nanostructure, enabling rapid cytosolic uptake into targeted cancer cells and deep tissue penetration. We further demonstrated that therapeutic oligonucleotides and small-molecule chemotherapy drugs can be easily delivered by CytoDirect and showed notable effects on gene knockdown and cell apoptosis, respectively. This study demonstrates the synergistic effect of disulfide and HER2 affibody modifications on the rapid cytosolic delivery of DNA origami and its payloads to targeted cells and deep tissues, thereby expanding the delivery capabilities of DNA nanostructures in a new direction for disease treatment.


Asunto(s)
Nanoestructuras , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/metabolismo , ADN/química , Nanoestructuras/química , Nanotecnología , Citosol/metabolismo , Conformación de Ácido Nucleico , Disulfuros/metabolismo
6.
Chembiochem ; 24(17): e202300223, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37099451

RESUMEN

Peptides and DNA are two of the most commonly used self-assembling biological molecules for the construction of nanomaterials. However, there are only a few examples that combine these two self-assembly motifs as key structural elements in a nanostructure. We report on the synthesis of a peptide-DNA conjugate that self-assembles into a stable homotrimer based on the coiled-coil motif. The hybrid peptide-DNA trimer was then used as a novel three-way junction to link together either small DNA tile nanostructures, or to close up a triangular wireframe DNA structure. The resulting nanostructures were characterized by atomic force microscopy, and compared with a scrambled, non-assembling peptide as a control. These hybrid nanostructures enable the integration of peptide motifs and potentially bio-functionality with DNA nanostructures, and open the door to novel nano-materials that have the advantages of both molecules.


Asunto(s)
Nanoestructuras , Ácidos Nucleicos , Nanoestructuras/química , ADN/química , Péptidos/química
7.
Nat Mater ; 21(4): 390-397, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361951

RESUMEN

Recent far-reaching advances in synthetic biology have yielded exciting tools for the creation of new materials. Conversely, advances in the fundamental understanding of soft-condensed matter, polymers and biomaterials offer new avenues to extend the reach of synthetic biology. The broad and exciting range of possible applications have substantial implications to address grand challenges in health, biotechnology and sustainability. Despite the potentially transformative impact that lies at the interface of synthetic biology and biomaterials, the two fields have, so far, progressed mostly separately. This Perspective provides a review of recent key advances in these two fields, and a roadmap for collaboration at the interface between the two communities. We highlight the near-term applications of this interface to the development of hierarchically structured biomaterials, from bioinspired building blocks to 'living' materials that sense and respond based on the reciprocal interactions between materials and embedded cells.


Asunto(s)
Materiales Biocompatibles , Biología Sintética , Polímeros
8.
J Chem Inf Model ; 63(9): 2794-2809, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37126365

RESUMEN

Holliday junction (HJ) is a noncanonical four-way DNA structure with a prominent role in DNA repair, recombination, and DNA nanotechnology. By rearranging its four arms, HJ can adopt either closed or open state. With enzymes typically recognizing only a single state, acquiring detailed knowledge of the rearrangement process is an important step toward fully understanding the biological function of HJs. Here, we carried out standard all-atom molecular dynamics (MD) simulations of the spontaneous opening-closing transitions, which revealed complex conformational transitions of HJs with an involvement of previously unconsidered "half-closed" intermediates. Detailed free-energy landscapes of the transitions were obtained by sophisticated enhanced sampling simulations. Because the force field overstabilizes the closed conformation of HJs, we developed a system-specific modification which for the first time allows the observation of spontaneous opening-closing HJ transitions in unbiased MD simulations and opens the possibilities for more accurate HJ computational studies of biological processes and nanomaterials.


Asunto(s)
ADN Cruciforme , ADN , Conformación Molecular , Reparación del ADN
9.
Chembiochem ; 22(10): 1755-1760, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33484601

RESUMEN

Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter-GelMA crosslinks with double-stranded DNA, allowing for their removal through toehold-mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to those on the hydrogel. The elastic modulus (G') of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein-based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.


Asunto(s)
Reactivos de Enlaces Cruzados/química , ADN/química , Hidrogeles/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Elasticidad , Gelatina/química , Humanos , Hidrogeles/farmacología , Metacrilatos/química , Rayos Ultravioleta
10.
J Am Chem Soc ; 142(3): 1406-1416, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31820959

RESUMEN

DNA and peptides are two of the most commonly used biomolecules for building self-assembling materials, but few examples exist of hybrid nanostructures that contain both components. Here we report the modification of two peptides that comprise a coiled-coil heterodimer pair with unique DNA handles in order to link DNA origami nanostructures bearing complementary strands into micrometer-long one-dimensional arrays. We probed the effect of number of coils on self-assembly and demonstrated the formation of  structures through multiple routes: one-pot assembly, formation of dimers and trimers and an alternating copolymer of two different origami structures, and stepwise assembly of purified structures with coiled-coil conjugates. Our results demonstrate the successful merging of two distinct self-assembly modes to create hybrid bionanomaterials expected to have a range of potential applications in the future.


Asunto(s)
Nanoestructuras/química , Ácidos Nucleicos/química , Péptidos/química
11.
Angew Chem Int Ed Engl ; 59(42): 18619-18626, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533629

RESUMEN

DNA is an ideal molecule for the construction of 3D crystals with tunable properties owing to its high programmability based on canonical Watson-Crick base pairing, with crystal assembly in all three dimensions facilitated by immobile Holliday junctions and sticky end cohesion. Despite the promise of these systems, only a handful of unique crystal scaffolds have been reported. Herein, we describe a new crystal system with a repeating sequence that mediates the assembly of a 3D scaffold via a series of Holliday junctions linked together with complementary sticky ends. By using an optimized junction sequence, we could determine a high-resolution (2.7 Å) structure containing R3 crystal symmetry, with a slight subsequent improvement (2.6 Å) using a modified sticky-end sequence. The immobile Holliday junction sequence allowed us to produce crystals that provided unprecedented atomic detail. In addition, we expanded the crystal cavities by 50 % by adding an additional helical turn between junctions, and we solved the structure to 4.5 Šresolution by molecular replacement.

12.
Chembiochem ; 20(17): 2191-2197, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-30875443

RESUMEN

DNA is one of the most promising building blocks for creating functional nanostructures for applications in biology and medicine. However, these highly programmable nanomaterials (e.g., DNA origami) often require supraphysiological salt concentrations for stability, are degraded by nuclease enzymes, and can elicit an inflammatory response. Herein, three key strategies for stabilizing DNA nanostructures to conditions required for biological applications are outlined: 1) tuning the buffer conditions or nanostructure design; 2) covalently crosslinking the strands that make up the structures; and 3) coating the structures with polymers, proteins, or lipid bilayers. Taken together, these approaches greatly expand the chemical diversity and future applicability of DNA nanotechnology both in vitro and in vivo.


Asunto(s)
ADN/química , Estabilidad de Medicamentos , Nanoestructuras/química , Tecnología Biomédica , Tampones (Química) , Materiales Biocompatibles Revestidos , Reactivos de Enlaces Cruzados/farmacología
13.
Bioconjug Chem ; 30(7): 1915-1922, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31082220

RESUMEN

Peptides and oligonucleotides are two of the most interesting molecular platforms for making bioactive materials. Peptides provide bioactivity that can mimic that of proteins, whereas oligonucleotides like DNA can be used as scaffolds to immobilize other molecules with nanoscale precision. In this Topical Review, we discuss covalent conjugates of peptides and DNA for creating bioactive materials that can interface with cells. In particular, we focus on two areas. The first is multivalent presentation of peptides on a DNA scaffold, both linear assemblies and more complex nanostructures. The second is the reversible tuning of the extracellular environment-like ligand presentation, stiffness, and hierarchical morphology-in peptide-DNA biomaterials. These examples highlight the potential for creating highly potent materials with benefits not possible with either molecule alone, and we outline a number of future directions and applications for peptide-DNA conjugates.


Asunto(s)
Materiales Biocompatibles/química , Nanoestructuras/química , Oligonucleótidos/química , Péptidos/química , Animales , Humanos , Modelos Moleculares , Nanoestructuras/ultraestructura , Nanotecnología/métodos
14.
Org Biomol Chem ; 17(7): 1668-1682, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30483688

RESUMEN

Peptide-oligonucleotide conjugates (POCs) are covalent constructs that link a molecule like DNA to a synthetic peptide sequences. These materials merge the programmable self-assembly of oligonucleotides with the bioactivity and chemical diversity of polypeptides. Recent years have seen the widespread use of POCs in a range of fields, driven the by relative advantages of each molecular type. In this review, we will present an overview of the synthesis and application of POCs, with an emphasis on emerging areas where these molecules will have a unique impact. We first discuss two main strategies for synthesizing POCs from synthetic monomers such as phosphoramidites and functionalized amino acids. We then describe four key fields of research in POCs: (1) biomaterials for interfacing with, and controlling the behavior of cells; (2) hybrid self-assembling systems that balance peptide and oligonucleotide intermolecular forces; (3) template-enhanced coupling of POCs into larger molecules; and (4) display of peptides on self-assembled oligonucleotide scaffolds. We also highlight several promising areas for future applications in each of these four directions, and anticipate ever increasing uses of POCs in interdisciplinary research.


Asunto(s)
Nanoestructuras/química , Nanotecnología/métodos , Oligonucleótidos/química , Péptidos/química
15.
Angew Chem Int Ed Engl ; 57(30): 9341-9345, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29790232

RESUMEN

A reconfigurable DNA nano-tweezer is reported that can be switched between a closed and open state with a brief pulse of UV light. In its initial state, the tweezer is held shut using a hairpin with a single-stranded poly-A loop. Also incorporated in the structure is a poly-T trigger strand bearing seven photocaged residues. Upon illumination with 365 nm light, the cages are removed and the trigger strand hybridizes to the loop, opening the tweezer and increasing the distance between its arms from 4 to 18 nm. This intramolecular process is roughly 60 times faster than adding an external trigger strand, and provides a mechanism for the rapid interconversion of DNA nanostructures with light.


Asunto(s)
ADN/química , Nanoestructuras/química , Rayos Ultravioleta , Conformación de Ácido Nucleico , Procesos Fotoquímicos
16.
J Am Chem Soc ; 139(32): 11254-11260, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28731332

RESUMEN

The foundational goal of structural DNA nanotechnology-the field that uses oligonucleotides as a molecular building block for the programmable self-assembly of nanostructured systems-was to use DNA to construct three-dimensional (3D) lattices for solving macromolecular structures. The programmable nature of DNA makes it an ideal system for rationally constructing self-assembled crystals and immobilizing guest molecules in a repeating 3D array through their specific stereospatial interactions with the scaffold. In this work, we have extended a previously described motif (4 × 5) by expanding the structure to a system that links four double-helical layers; we use a central weaving oligonucleotide containing a sequence of four six-base repeats (4 × 6), forming a matrix of layers that are organized and dictated by a series of Holliday junctions. In addition, we have assembled mirror image crystals (l-DNA) with the identical sequence that are completely resistant to nucleases. Bromine and selenium derivatives were obtained for the l- and d-DNA forms, respectively, allowing phase determination for both forms and solution of the resulting structures to 3.0 and 3.05 Å resolution. Both right- and left-handed forms crystallized in the trigonal space groups with mirror image 3-fold helical screw axes P32 and P31 for each motif, respectively. The structures reveal a highly organized array of discrete and well-defined cavities that are suitable for hosting guest molecules and allow us to dictate a priori the assembly of guest-DNA conjugates with a specified crystalline hand.


Asunto(s)
ADN/química , Bromo/química , Cristalización , Cristalografía por Rayos X , Modelos Moleculares , Nanoestructuras/química , Nanotecnología , Conformación de Ácido Nucleico , Oligonucleótidos/química , Selenio/química , Estereoisomerismo
17.
Nano Lett ; 15(1): 603-9, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25546084

RESUMEN

We report the construction of DNA nanotubes covalently functionalized with the cell adhesion peptide RGDS as a bioactive substrate for neural stem cell differentiation. Alteration of the Watson-Crick base pairing program that builds the nanostructures allowed us to probe independently the effect of nanotube architecture and peptide bioactivity on stem cell differentiation. We found that both factors instruct synergistically the preferential differentiation of the cells into neurons rather than astrocytes.


Asunto(s)
Diferenciación Celular , ADN/química , Nanotubos de Péptidos/química , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Oligopéptidos/química , Animales , Células Cultivadas , Ratones , Células-Madre Neurales/citología , Neuronas/citología
18.
Adv Sci (Weinh) ; 11(20): e2307257, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459678

RESUMEN

DNA origami nanodevices achieve programmable structure and tunable mechanical and dynamic properties by leveraging the sequence-specific interactions of nucleic acids. Previous advances have also established DNA origami as a useful building block to make well-defined micron-scale structures through hierarchical self-assembly, but these efforts have largely leveraged the structural features of DNA origami. The tunable dynamic and mechanical properties also provide an opportunity to make assemblies with adaptive structures and properties. Here the integration of DNA origami hinge nanodevices and coiled-coil peptides are reported into hybrid reconfigurable assemblies. With the same dynamic device and peptide interaction, it is made multiple higher-order assemblies (i.e., polymorphic assembly) by organizing clusters of peptides into patches or arranging single peptides into patterns on the surfaces of DNA origami to control the relative orientation of devices. The coiled-coil interactions are used to construct circular and linear assemblies whose structure and mechanical properties can be modulated with DNA-based reconfiguration. Reconfiguration of linear assemblies leads to micron scale motions and ≈2.5-10-fold increase in bending stiffness. The results provide a foundation for stimulus-responsive hybrid assemblies that can adapt their structure and properties in response to nucleic acid, peptide, protein, or other triggers.


Asunto(s)
ADN , Nanoestructuras , Nanotecnología , Conformación de Ácido Nucleico , ADN/química , Nanoestructuras/química , Nanotecnología/métodos , Péptidos/química
19.
Biomater Adv ; 157: 213726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38096646

RESUMEN

The extracellular matrix is a highly dynamic environment, and the precise temporal presentation of biochemical signals is critical for regulating cell behavior during development, healing, and disease progression. To mimic this behavior, we developed a modular DNA-based hydrogel platform to enable independent and reversible control over the immobilization of multiple biomolecules during in vitro cell culture. We combined reversible DNA handles with a norbornene-modified hyaluronic acid hydrogel to orthogonally add and remove multiple biomolecule-DNA conjugates at user-defined timepoints. We demonstrated that the persistent presentation of the cell adhesion peptide RGD was required to maintain cell spreading on hyaluronic acid hydrogels. Further, we discovered the delayed presentation of osteogenic growth peptide (OGP) increased alkaline phosphatase activity compared to other temporal variations. This finding is critically important when considering the design of OGP delivery approaches for bone repair. More broadly, this platform provides a unique approach to tease apart the temporal role of multiple biomolecules during development, regeneration, and disease progression.


Asunto(s)
Materiales Biocompatibles , Osteogénesis , Humanos , Ácido Hialurónico/química , Péptidos/química , ADN , Hidrogeles , Progresión de la Enfermedad
20.
Science ; 384(6697): 776-781, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38753798

RESUMEN

Sophisticated statistical mechanics approaches and human intuition have demonstrated the possibility of self-assembling complex lattices or finite-size constructs. However, attempts so far have mostly only been successful in silico and often fail in experiment because of unpredicted traps associated with kinetic slowing down (gelation, glass transition) and competing ordered structures. Theoretical predictions also face the difficulty of encoding the desired interparticle interaction potential with the experimentally available nano- and micrometer-sized particles. To overcome these issues, we combine SAT assembly (a patchy-particle interaction design algorithm based on constrained optimization) with coarse-grained simulations of DNA nanotechnology to experimentally realize trap-free self-assembly pathways. We use this approach to assemble a pyrochlore three-dimensional lattice, coveted for its promise in the construction of optical metamaterials, and characterize it with small-angle x-ray scattering and scanning electron microscopy visualization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA