Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34592166

RESUMEN

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Asunto(s)
COVID-19/inmunología , Interferón-alfa/inmunología , Células Asesinas Naturales/inmunología , SARS-CoV-2/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Secuencia de Bases , Humanos , Inmunidad Innata/inmunología , Inflamación/inmunología , Interferón-alfa/sangre , Fibrosis Pulmonar/patología , RNA-Seq , Índice de Severidad de la Enfermedad , Transcriptoma/genética , Reino Unido , Estados Unidos
2.
Nature ; 614(7947): 334-342, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697826

RESUMEN

The liver is bathed in bacterial products, including lipopolysaccharide transported from the intestinal portal vasculature, but maintains a state of tolerance that is exploited by persistent pathogens and tumours1-4. The cellular basis mediating this tolerance, yet allowing a switch to immunity or immunopathology, needs to be better understood for successful immunotherapy of liver diseases. Here we show that a variable proportion of CD8+ T cells compartmentalized in the human liver co-stain for CD14 and other prototypic myeloid membrane proteins and are enriched in close proximity to CD14high myeloid cells in hepatic zone 2. CD14+CD8+ T cells preferentially accumulate within the donor pool in liver allografts, among hepatic virus-specific and tumour-infiltrating responses, and in cirrhotic ascites. CD14+CD8+ T cells exhibit increased turnover, activation and constitutive immunomodulatory features with high homeostatic IL-10 and IL-2 production ex vivo, and enhanced antiviral/anti-tumour effector function after TCR engagement. This CD14+CD8+ T cell profile can be recapitulated by the acquisition of membrane proteins-including the lipopolysaccharide receptor complex-from mononuclear phagocytes, resulting in augmented tumour killing by TCR-redirected T cells in vitro. CD14+CD8+ T cells express integrins and chemokine receptors that favour interactions with the local stroma, which can promote their induction through CXCL12. Lipopolysaccharide can also increase the frequency of CD14+CD8+ T cells in vitro and in vivo, and skew their function towards the production of chemotactic and regenerative cytokines. Thus, bacterial products in the gut-liver axis and tissue stromal factors can tune liver immunity by driving myeloid instruction of CD8+ T cells with immunomodulatory ability.


Asunto(s)
Linfocitos T CD8-positivos , Tolerancia Inmunológica , Receptores de Lipopolisacáridos , Lipopolisacáridos , Hígado , Células Mieloides , Humanos , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Lipopolisacáridos/inmunología , Lipopolisacáridos/farmacología , Células Mieloides/inmunología , Células Mieloides/metabolismo , Neoplasias/inmunología , Neoplasias/patología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/inmunología , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/patología , Hígado/virología , Interleucina-2/biosíntesis , Interleucina-2/inmunología , Quimiotaxis de Leucocito , Bacterias/inmunología , Intestinos/inmunología , Intestinos/microbiología
3.
Nature ; 597(7875): 250-255, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497389

RESUMEN

The cellular landscape of the human intestinal tract is dynamic throughout life, developing in utero and changing in response to functional requirements and environmental exposures. Here, to comprehensively map cell lineages, we use single-cell RNA sequencing and antigen receptor analysis of almost half a million cells from up to 5 anatomical regions in the developing and up to 11 distinct anatomical regions in the healthy paediatric and adult human gut. This reveals the existence of transcriptionally distinct BEST4 epithelial cells throughout the human intestinal tract. Furthermore, we implicate IgG sensing as a function of intestinal tuft cells. We describe neural cell populations in the developing enteric nervous system, and predict cell-type-specific expression of genes associated with Hirschsprung's disease. Finally, using a systems approach, we identify key cell players that drive the formation of secondary lymphoid tissue in early human development. We show that these programs are adopted in inflammatory bowel disease to recruit and retain immune cells at the site of inflammation. This catalogue of intestinal cells will provide new insights into cellular programs in development, homeostasis and disease.


Asunto(s)
Envejecimiento , Sistema Nervioso Entérico/citología , Feto/citología , Salud , Intestinos/citología , Intestinos/crecimiento & desarrollo , Ganglios Linfáticos/citología , Ganglios Linfáticos/crecimiento & desarrollo , Adulto , Animales , Niño , Enfermedad de Crohn/patología , Conjuntos de Datos como Asunto , Sistema Nervioso Entérico/anatomía & histología , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Células Epiteliales/citología , Femenino , Feto/anatomía & histología , Feto/embriología , Humanos , Intestinos/embriología , Intestinos/inervación , Ganglios Linfáticos/embriología , Ganglios Linfáticos/patología , Ratones , Ratones Endogámicos C57BL , Organogénesis , Receptores de IgG/metabolismo , Transducción de Señal , Análisis Espacio-Temporal , Factores de Tiempo
4.
Nature ; 598(7880): 327-331, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588693

RESUMEN

Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11-12 weeks after conception1,2, yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6-7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21).


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea , Síndrome de Down/sangre , Síndrome de Down/inmunología , Feto/citología , Hematopoyesis , Sistema Inmunológico/citología , Linfocitos B/citología , Células Dendríticas/citología , Síndrome de Down/metabolismo , Síndrome de Down/patología , Células Endoteliales/patología , Eosinófilos/citología , Células Eritroides/citología , Granulocitos/citología , Humanos , Inmunidad , Células Mieloides/citología , Células del Estroma/citología
5.
Nature ; 574(7778): 365-371, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31597962

RESUMEN

Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.


Asunto(s)
Feto/citología , Hematopoyesis , Hígado/citología , Hígado/embriología , Células Sanguíneas/citología , Microambiente Celular , Femenino , Feto/metabolismo , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Hígado/metabolismo , Tejido Linfoide/citología , Análisis de la Célula Individual , Células Madre/metabolismo
6.
Nature ; 563(7730): 197-202, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30356220

RESUMEN

As the first line of defence against pathogens, cells mount an innate immune response, which varies widely from cell to cell. The response must be potent but carefully controlled to avoid self-damage. How these constraints have shaped the evolution of innate immunity remains poorly understood. Here we characterize the innate immune response's transcriptional divergence between species and variability in expression among cells. Using bulk and single-cell transcriptomics in fibroblasts and mononuclear phagocytes from different species, challenged with immune stimuli, we map the architecture of the innate immune response. Transcriptionally diverging genes, including those that encode cytokines and chemokines, vary across cells and have distinct promoter structures. Conversely, genes that are involved in the regulation of this response, such as those that encode transcription factors and kinases, are conserved between species and display low cell-to-cell variability in expression. We suggest that this expression pattern, which is observed across species and conditions, has evolved as a mechanism for fine-tuned regulation to achieve an effective but balanced response.


Asunto(s)
Células/metabolismo , Evolución Molecular , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Especificidad de Órganos/genética , Especificidad de la Especie , Transcripción Genética/genética , Animales , Células/citología , Citocinas/genética , Humanos , Regiones Promotoras Genéticas/genética
7.
Nature ; 563(7731): 347-353, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30429548

RESUMEN

During early human pregnancy the uterine mucosa transforms into the decidua, into which the fetal placenta implants and where placental trophoblast cells intermingle and communicate with maternal cells. Trophoblast-decidual interactions underlie common diseases of pregnancy, including pre-eclampsia and stillbirth. Here we profile the transcriptomes of about 70,000 single cells from first-trimester placentas with matched maternal blood and decidual cells. The cellular composition of human decidua reveals subsets of perivascular and stromal cells that are located in distinct decidual layers. There are three major subsets of decidual natural killer cells that have distinctive immunomodulatory and chemokine profiles. We develop a repository of ligand-receptor complexes and a statistical tool to predict the cell-type specificity of cell-cell communication via these molecular interactions. Our data identify many regulatory interactions that prevent harmful innate or adaptive immune responses in this environment. Our single-cell atlas of the maternal-fetal interface reveals the cellular organization of the decidua and placenta, and the interactions that are critical for placentation and reproductive success.


Asunto(s)
Comunicación Celular , Feto/citología , Histocompatibilidad Materno-Fetal/inmunología , Placenta/citología , Placenta/metabolismo , Embarazo/inmunología , Análisis de la Célula Individual , Comunicación Celular/inmunología , Diferenciación Celular/genética , Decidua/citología , Decidua/inmunología , Decidua/metabolismo , Femenino , Feto/inmunología , Feto/metabolismo , Humanos , Células Asesinas Naturales/citología , Células Asesinas Naturales/inmunología , Ligandos , Placenta/inmunología , ARN Citoplasmático Pequeño/genética , Análisis de Secuencia de ARN , Células del Estroma/citología , Células del Estroma/metabolismo , Transcriptoma , Trofoblastos/citología , Trofoblastos/inmunología , Trofoblastos/metabolismo
8.
Am J Respir Crit Care Med ; 207(5): 566-576, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36095143

RESUMEN

Rationale: Obesity affects 40% of U.S. adults, is associated with a proinflammatory state, and presents a significant risk factor for the development of severe coronavirus disease (COVID-19). To date, there is limited information on how obesity might affect immune cell responses in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Objectives: To determine the impact of obesity on respiratory tract immunity in COVID-19 across the human lifespan. Methods: We analyzed single-cell transcriptomes from BAL in three ventilated adult cohorts with (n = 24) or without (n = 9) COVID-19 from nasal immune cells in children with (n = 14) or without (n = 19) COVID-19, and from peripheral blood mononuclear cells in an independent adult COVID-19 cohort (n = 42), comparing obese and nonobese subjects. Measurements and Main Results: Surprisingly, we found that obese adult subjects had attenuated lung immune or inflammatory responses in SARS-CoV-2 infection, with decreased expression of IFN-α, IFN-γ, and TNF-α (tumor necrosis factor α) response gene signatures in almost all lung epithelial and immune cell subsets, and lower expression of IFNG and TNF in specific lung immune cells. Peripheral blood immune cells in an independent adult cohort showed a similar but less marked reduction in type-I IFN and IFNγ response genes, as well as decreased serum IFNα, in obese patients with SARS-CoV-2. Nasal immune cells from obese children with COVID-19 also showed reduced enrichment of IFN-α and IFN-γ response genes. Conclusions: These findings show blunted tissue immune responses in obese patients with COVID-19, with implications for treatment stratification, supporting the specific application of inhaled recombinant type-I IFNs in this vulnerable subset.


Asunto(s)
COVID-19 , Interferón Tipo I , Obesidad Infantil , Adulto , Humanos , Niño , SARS-CoV-2 , Leucocitos Mononucleares , Pulmón/patología
9.
Eur J Immunol ; 51(4): 764-772, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33569778

RESUMEN

The development of the human immune system during embryonic and fetal life has historically been difficult to research due to limited access to human tissue. Experimental animal models have been widely used to study development but cellular and molecular programmes may not be conserved across species. The advent of multiomic single-cell technologies and an increase in human developmental tissue biobank resources have facilitated single-cell multiomic studies focused on human immune development. A critical question in the near future is "How do we best reconcile scientific findings across multiple omic modalities, developmental time, and organismic space?" In this review, we discuss the application of single-cell multiomic technologies to unravel the major cellular lineages in the prenatal human immune system. We also identify key areas where the combined power of multiomics technologies can be leveraged to address specific immunological gaps in our current knowledge and explore new research horizons in human development.


Asunto(s)
Desarrollo Embrionario/inmunología , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Proteómica/métodos , Análisis de la Célula Individual/métodos , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/inmunología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos
10.
Front Oncol ; 13: 1258245, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869076

RESUMEN

Lymphomas are a heterogenous group of lymphoid neoplasms with a wide variety of clinical presentations. Response to treatment and prognosis differs both between and within lymphoma subtypes. Improved molecular and genetic profiling has increased our understanding of the factors which drive these clinical dynamics. Immune and non-immune cells within the lymphoma tumor microenvironment (TME) can both play a key role in antitumor immune responses and conversely also support lymphoma growth and survival. A deeper understanding of the lymphoma TME would identify key lymphoma and immune cell interactions which could be disrupted for therapeutic benefit. Single cell RNA sequencing studies have provided a more comprehensive description of the TME, however these studies are limited in that they lack spatial context. Spatial transcriptomics provides a comprehensive analysis of gene expression within tissue and is an attractive technique in lymphoma to both disentangle the complex interactions between lymphoma and TME cells and improve understanding of how lymphoma cells evade the host immune response. This article summarizes current spatial transcriptomic technologies and their use in lymphoma research to date. The resulting data has already enriched our knowledge of the mechanisms and clinical impact of an immunosuppressive TME in lymphoma and the accrual of further studies will provide a fundamental step in the march towards personalized medicine.

11.
Nat Genet ; 55(6): 1066-1075, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37308670

RESUMEN

Common genetic variants across individuals modulate the cellular response to pathogens and are implicated in diverse immune pathologies, yet how they dynamically alter the response upon infection is not well understood. Here, we triggered antiviral responses in human fibroblasts from 68 healthy donors, and profiled tens of thousands of cells using single-cell RNA-sequencing. We developed GASPACHO (GAuSsian Processes for Association mapping leveraging Cell HeterOgeneity), a statistical approach designed to identify nonlinear dynamic genetic effects across transcriptional trajectories of cells. This approach identified 1,275 expression quantitative trait loci (local false discovery rate 10%) that manifested during the responses, many of which were colocalized with susceptibility loci identified by genome-wide association studies of infectious and autoimmune diseases, including the OAS1 splicing quantitative trait locus in a COVID-19 susceptibility locus. In summary, our analytical approach provides a unique framework for delineation of the genetic variants that shape a wide spectrum of transcriptional responses at single-cell resolution.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Tetranitrato de Pentaeritritol , Humanos , Estudio de Asociación del Genoma Completo , Inmunidad Innata
12.
Science ; 381(6659): eadd7564, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37590359

RESUMEN

The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.


Asunto(s)
Desarrollo Embrionario , Saco Vitelino , Femenino , Humanos , Embarazo , Coagulación Sanguínea/genética , Macrófagos , Saco Vitelino/citología , Saco Vitelino/metabolismo , Desarrollo Embrionario/genética , Atlas como Asunto , Expresión Génica , Perfilación de la Expresión Génica , Hematopoyesis/genética , Hígado/embriología
13.
bioRxiv ; 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37986877

RESUMEN

T cells develop from circulating precursors, which enter the thymus and migrate throughout specialised sub-compartments to support maturation and selection. This process starts already in early fetal development and is highly active until the involution of the thymus in adolescence. To map the micro-anatomical underpinnings of this process in pre- vs. post-natal states, we undertook a spatially resolved analysis and established a new quantitative morphological framework for the thymus, the Cortico-Medullary Axis. Using this axis in conjunction with the curation of a multimodal single-cell, spatial transcriptomics and high-resolution multiplex imaging atlas, we show that canonical thymocyte trajectories and thymic epithelial cells are highly organised and fully established by post-conception week 12, pinpoint TEC progenitor states, find that TEC subsets and peripheral tissue genes are associated with Hassall's Corpuscles and uncover divergence in the pace and drivers of medullary entry between CD4 vs. CD8 T cell lineages. These findings are complemented with a holistic toolkit for spatial analysis and annotation, providing a basis for a detailed understanding of T lymphocyte development.

14.
Nurs Womens Health ; 26(3): 194-204, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35545135

RESUMEN

OBJECTIVE: To implement a speakers bureau to educate providers, health caregivers, and staff practicing within Tennessee hospitals on evidence-based practice recommendations related to opioid use disorder in pregnancy, postpartum hemorrhage, maternal hypertension, and implicit bias. DESIGN: Quality improvement project. SETTING/LOCAL PROBLEM: Multiple health care facilities throughout Tennessee, where rates of pregnancy-related mortality are greater than the national average and where Black women are three times as likely as White women to die of pregnancy complications. PARTICIPANTS: Speakers (n = 47) included obstetricians, advanced practice providers, and nurses. Program attendees (n = 369) included providers and caregivers representing five health care facilities. INTERVENTION/MEASUREMENTS: Speakers were provided standardized training to disseminate best practice methods. Current evidence-based presentations regarding the top maternal mortality concerns were formatted for educational events at five Tennessee health care facilities. Independent outcome measures using electronic survey instruments were collected for speakers and audience participants. Speakers evaluated training methods, and participants evaluated the quality and efficacy of the information provided. RESULTS: Based on speaker evaluations, 70.59% rated the quality of training as 5 of 5, and 76.47% rated the relevance of training as 5 of 5. Overall, 16 of 17 (94.1%) speakers stated that adequate training was provided. Analysis of participant evaluations reported that 57.5% were very confident (5/5) that the information learned through the speakers bureau will improve their care of pregnant and postpartum people. Additionally, 71% were very likely (5/5) to apply the information to their practice. CONCLUSION: This project showed the dissemination of best practices by promoting knowledge, supporting practice change, and improving retained information in maternity providers and caregiver participants. Implementation of speakers bureaus to educate providers and caregivers within health care facilities has the potential to influence practice change and decrease maternal morbidity and mortality rates in the state of Tennessee.


Asunto(s)
Hemorragia Posparto , Preeclampsia , Complicaciones del Embarazo , Femenino , Humanos , Mortalidad Materna , Embarazo , Mejoramiento de la Calidad
15.
Science ; 376(6597): eabo0510, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35549310

RESUMEN

Single-cell genomics studies have decoded the immune cell composition of several human prenatal organs but were limited in describing the developing immune system as a distributed network across tissues. We profiled nine prenatal tissues combining single-cell RNA sequencing, antigen-receptor sequencing, and spatial transcriptomics to reconstruct the developing human immune system. This revealed the late acquisition of immune-effector functions by myeloid and lymphoid cell subsets and the maturation of monocytes and T cells before peripheral tissue seeding. Moreover, we uncovered system-wide blood and immune cell development beyond primary hematopoietic organs, characterized human prenatal B1 cells, and shed light on the origin of unconventional T cells. Our atlas provides both valuable data resources and biological insights that will facilitate cell engineering, regenerative medicine, and disease understanding.


Asunto(s)
Sistema Inmunológico , Linfocitos , Monocitos , Genómica , Humanos , Sistema Inmunológico/embriología , Linfocitos/metabolismo , Monocitos/metabolismo , Especificidad de Órganos , RNA-Seq , Análisis de la Célula Individual
16.
Stem Cell Reports ; 17(7): 1699-1713, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35750043

RESUMEN

Conjunctival epithelial cells, which express viral-entry receptors angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine type 2 (TMPRSS2), constitute the largest exposed epithelium of the ocular surface tissue and may represent a relevant viral-entry route. To address this question, we generated an organotypic air-liquid-interface model of conjunctival epithelium, composed of basal, suprabasal, and superficial epithelial cells, and fibroblasts, which could be maintained successfully up to day 75 of differentiation. Using single-cell RNA sequencing (RNA-seq), with complementary imaging and virological assays, we observed that while all conjunctival cell types were permissive to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome expression, a productive infection did not ensue. The early innate immune response to SARS-CoV-2 infection in conjunctival cells was characterised by a robust autocrine and paracrine NF-κB activity, without activation of antiviral interferon signalling. Collectively, these data enrich our understanding of SARS-CoV-2 infection at the human ocular surface, with potential implications for the design of preventive strategies and conjunctival transplantation.


Asunto(s)
COVID-19 , Células Epiteliales/metabolismo , Humanos , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/metabolismo , SARS-CoV-2
17.
Nat Cell Biol ; 24(10): 1487-1498, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36109670

RESUMEN

The liver has been studied extensively due to the broad number of diseases affecting its vital functions. However, therapeutic advances have been hampered by the lack of knowledge concerning human hepatic development. Here, we addressed this limitation by describing the developmental trajectories of different cell types that make up the human liver at single-cell resolution. These transcriptomic analyses revealed that sequential cell-to-cell interactions direct functional maturation of hepatocytes, with non-parenchymal cells playing essential roles during organogenesis. We utilized this information to derive bipotential hepatoblast organoids and then exploited this model system to validate the importance of signalling pathways in hepatocyte and cholangiocyte specification. Further insights into hepatic maturation also enabled the identification of stage-specific transcription factors to improve the functionality of hepatocyte-like cells generated from human pluripotent stem cells. Thus, our study establishes a platform to investigate the basic mechanisms directing human liver development and to produce cell types for clinical applications.


Asunto(s)
Hepatocitos , Hígado , Humanos , Hígado/metabolismo , Hepatocitos/metabolismo , Diferenciación Celular , Organoides , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Can Urol Assoc J ; 15(8): E386-E392, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33410740

RESUMEN

INTRODUCTION: This study aims to assess the longer-term functional, anatomical, and metabolic outcomes of patients who underwent Studer neobladder (SNB) urinary diversion. METHODS: A retrospective review of patients who underwent SNB at a single center from 1995-2017 (n=116) was performed. Demographics, comorbidities, pathological data, and longer-term functional, anatomical, and metabolic outcomes were collected from hospital records. The primary outcome was voiding function of patients at most recent followup. Secondary outcomes included postoperative complications, renal function, nephrolithiasis, infections, and metabolic outcomes. RESULTS: Excluding those with incomplete followup data, 72 patients with a minimum followup of one year were included for analysis. Median followup was 70±11 months, with 52.8% of patients having ≥5 years of followup. Clean intermittent catheterization (CIC) was used by 22.2% of patient at most recent followup, which was mostly necessitated by bladder overdistension, deteriorating renal function, or recurrent urosepsis despite timed voiding. Patients experienced more daytime and nighttime urinary incontinence in the early postoperative setting, which improved over time. Generally, renal function declined over time; poorer long-term renal function was predicted by hydronephrosis within one year (p=0.002). CONCLUSIONS: Longer-term followup of SNB reveals significant but manageable complications. Gradual decline in renal function was common. Strict adherence to bladder emptying protocols (e.g., timed voiding or CIC) may reduce incidence of renal deterioration, metabolic disorders, and urinary dysfunction. Early onset (<1 year) of hydronephrosis may indicate a need for intervention to preserve long-term renal function.

19.
Genome Biol ; 22(1): 346, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34930412

RESUMEN

Multimodal data is rapidly growing in many fields of science and engineering, including single-cell biology. We introduce MultiMAP, a novel algorithm for dimensionality reduction and integration. MultiMAP can integrate any number of datasets, leverages features not present in all datasets, is not restricted to a linear mapping, allows the user to specify the influence of each dataset, and is extremely scalable to large datasets. We apply MultiMAP to single-cell transcriptomics, chromatin accessibility, methylation, and spatial data and show that it outperforms current approaches. On a new thymus dataset, we use MultiMAP to integrate cells along a temporal trajectory. This enables quantitative comparison of transcription factor expression and binding site accessibility over the course of T cell differentiation, revealing patterns of expression versus binding site opening kinetics.


Asunto(s)
Mapeo Cromosómico/métodos , Análisis de la Célula Individual/métodos , Transcriptoma , Algoritmos , Cromatina , Cromosomas Humanos , Regulación de la Expresión Génica , Marcadores Genéticos , Genómica , Humanos , Programas Informáticos , Factores de Transcripción
20.
Nat Commun ; 12(1): 7092, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34876592

RESUMEN

The nasal epithelium is a plausible entry point for SARS-CoV-2, a site of pathogenesis and transmission, and may initiate the host response to SARS-CoV-2. Antiviral interferon (IFN) responses are critical to outcome of SARS-CoV-2. Yet little is known about the interaction between SARS-CoV-2 and innate immunity in this tissue. Here we apply single-cell RNA sequencing and proteomics to a primary cell model of human nasal epithelium differentiated at air-liquid interface. SARS-CoV-2 demonstrates widespread tropism for nasal epithelial cell types. The host response is dominated by type I and III IFNs and interferon-stimulated gene products. This response is notably delayed in onset relative to viral gene expression and compared to other respiratory viruses. Nevertheless, once established, the paracrine IFN response begins to impact on SARS-CoV-2 replication. When provided prior to infection, recombinant IFNß or IFNλ1 induces an efficient antiviral state that potently restricts SARS-CoV-2 viral replication, preserving epithelial barrier integrity. These data imply that the IFN-I/III response to SARS-CoV-2 initiates in the nasal airway and suggest nasal delivery of recombinant IFNs to be a potential chemoprophylactic strategy.


Asunto(s)
Células Epiteliales/virología , Interferón Tipo I/inmunología , Interferones/inmunología , Mucosa Nasal/virología , SARS-CoV-2/fisiología , Antivirales/inmunología , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/inmunología , Humanos , Inmunidad Innata , Cinética , Mucosa Nasal/citología , Mucosa Nasal/inmunología , SARS-CoV-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tropismo Viral , Replicación Viral/efectos de los fármacos , Interferón lambda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA