Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochim Biophys Acta ; 1853(4): 822-9, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25447546

RESUMEN

Mechanotransduction describes how a cell senses and interacts with its environment. The concept originated in adhesion biology where adhesion receptors, integrins, facilitate force transmission between the extracellular matrix and the intracellular actin cytoskeleton. Indeed, during any adhesive contacts, cells do exert mechanical force. Hence, the probing of the local environment by cells results in mechanical cues that contribute to cellular functions and cell fate decisions such as migration, proliferation, differentiation and apoptosis. On the molecular level, mechanical forces can rearrange proteins laterally within the membrane, regulate their activity by inducing conformational changes and probe the mechanical properties and bond strength of receptor-ligands. From this point of view, it appears surprising that molecular forces have been largely overlooked in membrane organisation and ligand discrimination processes in lymphocytes. During T cell activation, the T cell receptor recognises and distinguishes antigenic from benign endogenous peptides to initiate the reorganisation of membrane proteins into signalling clusters within the immunological synapse. In this review, we asked whether characteristics of fibroblast force sensing could be applied to immune cell antigen recognition and signalling, and outline state-of-the-art experimental strategies for studying forces in the context of membrane organisation. This article is part of a Special Issue entitled: Nanoscale membrane orgainisation and signalling.


Asunto(s)
Membrana Celular/metabolismo , Nanopartículas/química , Linfocitos T/metabolismo , Animales , Fenómenos Biomecánicos , Humanos , Activación de Linfocitos/inmunología , Modelos Inmunológicos , Linfocitos T/citología
2.
Opt Express ; 20(1): 593-600, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22274381

RESUMEN

We report an experimental analysis of the capabilities of scattering-type scanning near-field optical microscopy for mapping sub-surface features at varying depths. For the first time, we demonstrate experimentally that both the spatial resolution and depth contrast can be improved in subsurface microscopy by demodulating the measured near-field signal at higher harmonics of the probe's tapping frequency and by operating at smaller tapping amplitudes. Our findings are qualitatively supported by a simple dipole model.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Microscopía/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
ACS Nano ; 5(8): 6494-9, 2011 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-21770439

RESUMEN

Infrared absorption spectroscopy is a powerful and widely used tool for analyzing the chemical composition and structure of materials. Because of the diffraction limit, however, it cannot be applied for studying individual nanostructures. Here we demonstrate that the phase contrast in substrate-enhanced scattering-type scanning near-field optical microscopy (s-SNOM) provides a map of the infrared absorption spectrum of individual nanoparticles with nanometer-scale spatial resolution. We succeeded in the chemical identification of silicon nitride nanoislands with heights well below 10 nm, by infrared near-field fingerprint spectroscopy of the Si-N stretching bond. Employing a novel theoretical model, we show that the near-field phase spectra of small particles correlate well with their far-field absorption spectra. On the other hand, the spectral near-field contrast does not scale with the volume of the particles. We find a nearly linear scaling law, which we can attribute to the near-field coupling between the near-field probe and the substrate. Our results provide fundamental insights into the spectral near-field contrast of nanoparticles and clearly demonstrate the capability of s-SNOM for nanoscale chemical mapping based on local infrared absorption.


Asunto(s)
Microscopía/métodos , Nanopartículas/química , Nanotecnología/métodos , Dispersión de Radiación , Espectrofotometría Infrarroja/métodos , Absorción , Interferometría , Luz , Fenómenos Ópticos , Compuestos de Silicona/química , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA