Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 604(7904): 65-71, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388197

RESUMEN

With the scaling of lateral dimensions in advanced transistors, an increased gate capacitance is desirable both to retain the control of the gate electrode over the channel and to reduce the operating voltage1. This led to a fundamental change in the gate stack in 2008, the incorporation of high-dielectric-constant HfO2 (ref. 2), which remains the material of choice to date. Here we report HfO2-ZrO2 superlattice heterostructures as a gate stack, stabilized with mixed ferroelectric-antiferroelectric order, directly integrated onto Si transistors, and scaled down to approximately 20 ångströms, the same gate oxide thickness required for high-performance transistors. The overall equivalent oxide thickness in metal-oxide-semiconductor capacitors is equivalent to an effective SiO2 thickness of approximately 6.5 ångströms. Such a low effective oxide thickness and the resulting large capacitance cannot be achieved in conventional HfO2-based high-dielectric-constant gate stacks without scavenging the interfacial SiO2, which has adverse effects on the electron transport and gate leakage current3. Accordingly, our gate stacks, which do not require such scavenging, provide substantially lower leakage current and no mobility degradation. This work demonstrates that ultrathin ferroic HfO2-ZrO2 multilayers, stabilized with competing ferroelectric-antiferroelectric order in the two-nanometre-thickness regime, provide a path towards advanced gate oxide stacks in electronic devices beyond conventional HfO2-based high-dielectric-constant materials.

2.
Nature ; 592(7854): 376-380, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33854251

RESUMEN

The collective dynamics of topological structures1-6 are of interest from both fundamental and applied perspectives. For example, studies of dynamical properties of magnetic vortices and skyrmions3,4 have not only deepened our understanding of many-body physics but also offered potential applications in data processing and storage7. Topological structures constructed from electrical polarization, rather than electron spin, have recently been realized in ferroelectric superlattices5,6, and these are promising for ultrafast electric-field control of topological orders. However, little is known about the dynamics underlying the functionality of such complex extended nanostructures. Here, using terahertz-field excitation and femtosecond X-ray diffraction measurements, we observe ultrafast collective polarization dynamics that are unique to polar vortices, with orders-of-magnitude higher frequencies and smaller lateral size than those of experimentally realized magnetic vortices3. A previously unseen tunable mode, hereafter referred to as a vortexon, emerges in the form of transient arrays of nanoscale circular patterns of atomic displacements, which reverse their vorticity on picosecond timescales. Its frequency is considerably reduced (softened) at a critical strain, indicating a condensation (freezing) of structural dynamics. We use first-principles-based atomistic calculations and phase-field modelling to reveal the microscopic atomic arrangements and corroborate the frequencies of the vortex modes. The discovery of subterahertz collective dynamics in polar vortices opens opportunities for electric-field-driven data processing in topological structures with ultrahigh speed and density.

3.
Phys Rev Lett ; 129(24): 247601, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36563236

RESUMEN

An escalating challenge in condensed-matter research is the characterization of emergent order-parameter nanostructures such as ferroelectric and ferromagnetic skyrmions. Their small length scales coupled with complex, three-dimensional polarization or spin structures makes them demanding to trace out fully. Resonant elastic x-ray scattering (REXS) has emerged as a technique to study chirality in spin textures such as skyrmions and domain walls. It has, however, been used to a considerably lesser extent to study analogous features in ferroelectrics. Here, we present a framework for modeling REXS from an arbitrary arrangement of charge quadrupole moments, which can be applied to nanostructures in materials such as ferroelectrics. With this, we demonstrate how extended reciprocal space scans using REXS with circularly polarized x rays can probe the three-dimensional structure and chirality of polar skyrmions. Measurements, bolstered by quantitative scattering calculations, show that polar skyrmions of mixed chirality coexist, and that REXS allows valuation of relative fractions of right- and left-handed skyrmions. Our quantitative analysis of the structure and chirality of polar skyrmions highlights the capability of REXS for establishing complex topological structures toward future application exploits.

4.
Phys Rev Lett ; 120(9): 096101, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29547337

RESUMEN

Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO_{3} are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20×10^{6} V/m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.

5.
Phys Rev Lett ; 110(8): 086109, 2013 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-23473175

RESUMEN

By carefully tuning the thickness of a compliant thin film placed within an acoustic cavity, we achieve coherent control of the cavity's acoustic resonances, analogous to the operation of an optical etalon. This technique is demonstrated using a supported membrane oscillator in which multiple high-frequency harmonic resonances are simultaneously optoexcited by an ultrafast laser. Theoretical and computational methods are used to analyze the selective strengthening or suppression of these resonances by constructive or destructive interference.

6.
Science ; 376(6593): 648-652, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35536900

RESUMEN

The critical size limit of voltage-switchable electric dipoles has extensive implications for energy-efficient electronics, underlying the importance of ferroelectric order stabilized at reduced dimensionality. We report on the thickness-dependent antiferroelectric-to-ferroelectric phase transition in zirconium dioxide (ZrO2) thin films on silicon. The emergent ferroelectricity and hysteretic polarization switching in ultrathin ZrO2, conventionally a paraelectric material, notably persists down to a film thickness of 5 angstroms, the fluorite-structure unit-cell size. This approach to exploit three-dimensional centrosymmetric materials deposited down to the two-dimensional thickness limit, particularly within this model fluorite-structure system that possesses unconventional ferroelectric size effects, offers substantial promise for electronics, demonstrated by proof-of-principle atomic-scale nonvolatile ferroelectric memory on silicon. Additionally, it is also indicative of hidden electronic phenomena that are achievable across a wide class of simple binary materials.

7.
Nat Commun ; 13(1): 1769, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383159

RESUMEN

Resonant elastic X-ray scattering (REXS) offers a unique tool to investigate solid-state systems providing spatial knowledge from diffraction combined with electronic information through the enhanced absorption process, allowing the probing of magnetic, charge, spin, and orbital degrees of spatial order together with electronic structure. A new promising application of REXS is to elucidate the chiral structure of electrical polarization emergent in a ferroelectric oxide superlattice in which the polarization vectors in the REXS amplitude are implicitly described through an anisotropic tensor corresponding to the quadrupole moment. Here, we present a detailed theoretical framework and analysis to quantitatively analyze the experimental results of Ti L-edge REXS of a polar vortex array formed in a PbTiO3/SrTiO3 superlattice. Based on this theoretical framework, REXS for polar chiral structures can become a useful tool similar to x-ray resonant magnetic scattering (XRMS), enabling a comprehensive study of both electric and magnetic REXS on the chiral structures.

8.
Nat Commun ; 13(1): 1929, 2022 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35396393

RESUMEN

The emergence of magnetism in quantum materials creates a platform to realize spin-based applications in spintronics, magnetic memory, and quantum information science. A key to unlocking new functionalities in these materials is the discovery of tunable coupling between spins and other microscopic degrees of freedom. We present evidence for interlayer magnetophononic coupling in the layered magnetic topological insulator MnBi2Te4. Employing magneto-Raman spectroscopy, we observe anomalies in phonon scattering intensities across magnetic field-driven phase transitions, despite the absence of discernible static structural changes. This behavior is a consequence of a magnetophononic wave-mixing process that allows for the excitation of zone-boundary phonons that are otherwise 'forbidden' by momentum conservation. Our microscopic model based on density functional theory calculations reveals that this phenomenon can be attributed to phonons modulating the interlayer exchange coupling. Moreover, signatures of magnetophononic coupling are also observed in the time domain through the ultrafast excitation and detection of coherent phonons across magnetic transitions. In light of the intimate connection between magnetism and topology in MnBi2Te4, the magnetophononic coupling represents an important step towards coherent on-demand manipulation of magnetic topological phases.

9.
Adv Mater ; 34(49): e2202841, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36189841

RESUMEN

Magnetism in topological materials creates phases exhibiting quantized transport phenomena with potential technological applications. The emergence of such phases relies on strong interaction between localized spins and the topological bands, and the consequent formation of an exchange gap. However, this remains experimentally unquantified in intrinsic magnetic topological materials. Here, this interaction is quantified in MnBi2 Te4 , a topological insulator with intrinsic antiferromagnetism. This is achieved by optically exciting Bi-Te p states comprising the bulk topological bands and interrogating the consequent Mn 3d spin dynamics, using a multimodal ultrafast approach. Ultrafast electron scattering and magneto-optic measurements show that the p states demagnetize via electron-phonon scattering at picosecond timescales. Despite being energetically decoupled from the optical excitation, the Mn 3d spins, probed by resonant X-ray scattering, are observed to disorder concurrently with the p spins. Together with atomistic simulations, this reveals that the exchange coupling between localized spins and the topological bands is at least 100 times larger than the superexchange interaction, implying an optimal exchange gap of at least 25 meV in the surface states. By quantifying this exchange coupling, this study validates the materials-by-design strategy of utilizing localized magnetic order to manipulate topological phases, spanning static to ultrafast timescales.

10.
Adv Mater ; 33(24): e2008269, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33960025

RESUMEN

Spin-orbit torques (SOTs) that arise from materials with large spin-orbit coupling offer a new pathway for energy-efficient and fast magnetic information storage. SOTs in conventional heavy metals and topological insulators are explored extensively, while 5d transition metal oxides, which also host ions with strong spin-orbit coupling, are a relatively new territory in the field of spintronics. An all-oxide, SrTiO3 (STO)//La0.7 Sr0.3 MnO3 (LSMO)/SrIrO3 (SIO) heterostructure with lattice-matched crystal structure is synthesized, exhibiting an epitaxial and atomically sharp interface between the ferromagnetic LSMO and the high spin-orbit-coupled metal SIO. Spin-torque ferromagnetic resonance (ST-FMR) is used to probe the effective magnetization and the SOT efficiency in LSMO/SIO heterostructures grown on STO substrates. Remarkably, epitaxial LSMO/SIO exhibits a large SOT efficiency, ξ||  = 1, while retaining a reasonably low shunting factor and increasing the effective magnetization of LSMO by ≈50%. The findings highlight the significance of epitaxy as a powerful tool to achieve a high SOT efficiency, explore the rich physics at the epitaxial interface, and open up a new pathway for designing next-generation energy-efficient spintronic devices.

11.
Adv Mater ; 33(10): e2006089, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33533113

RESUMEN

The synthesis of fully epitaxial ferroelectric Hf0.5 Zr0.5 O2 (HZO) thin films through the use of a conducting pyrochlore oxide electrode that acts as a structural and chemical template is reported. Such pyrochlores, exemplified by Pb2 Ir2 O7 (PIO) and Bi2 Ru2 O7 (BRO), exhibit metallic conductivity with room-temperature resistivity of <1 mΩ cm and are closely lattice matched to yttria-stabilized zirconia substrates as well as the HZO layers grown on top of them. Evidence for epitaxy and domain formation is established with X-ray diffraction and scanning transmission electron microscopy, which show that the c-axis of the HZO film is normal to the substrate surface. The emergence of the non-polar-monoclinic phase from the polar-orthorhombic phase is observed when the HZO film thickness is ≥≈30 nm. Thermodynamic analyses reveal the role of epitaxial strain and surface energy in stabilizing the polar phase as well as its coexistence with the non-polar-monoclinic phase as a function of film thickness.

12.
Struct Dyn ; 6(1): 014502, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30868087

RESUMEN

Due to the strong dependence of electronic properties on the local bonding environment, a full characterization of the structural dynamics in ultrafast experiments is critical. Here, we report the dynamics and structural refinement at nanosecond time scales of a perovskite thin film by combining optical excitation with time-resolved X-ray diffraction. This is achieved by monitoring the temporal response of both integer and half-integer diffraction peaks of LaVO3 in response to an above-band-gap 800 nm pump pulse. We find that the lattice expands by 0.1% out of plane, and the relaxation is characterized by a biexponential decay with 2 and 12 ns time scales. We analyze the relative intensity change in half-integer peaks and show that the distortions to the substructure are small: the oxygen octahedral rotation angles decrease by ∼0.3° and La displacements decrease by ∼0.2 pm, which directly corresponds to an ∼0.8° increase in the V-O-V bond-angles, an in-plane V-O bond length reduction of ∼0.3 pm, and an unchanged out-of-plane bond length. This demonstration of tracking the atomic positions in a pump-probe experiment provides experimentally accessible values for structural and electronic tunability in this class of materials and will stimulate future experiments.

13.
Opt Express ; 16(4): 2322-35, 2008 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-18542311

RESUMEN

We demonstrate optical time-domain spectroscopy from femtoseconds to nanoseconds using an ultrafast dual-fiber-laser system with kilohertz continuous scanning rates. Utilizing different wavelengths for the pump and probe beams, we exploit this system's broad range of timescales for quantitative studies of thermal transport and the detection of coherent spin and lattice excitations in epitaxial magnetic thin films. The extraordinary temporal dynamic range provides a way to connect the fast and slow timescales in the observation of dissipation and decoherence processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA